Publications
2024
11840969
JKNPB296
2024
1
apa
50
date
desc
374
https://csmb.hu-berlin.de/wp-content/plugins/zotpress/
%7B%22status%22%3A%22success%22%2C%22updateneeded%22%3Afalse%2C%22instance%22%3Afalse%2C%22meta%22%3A%7B%22request_last%22%3A50%2C%22request_next%22%3A50%2C%22used_cache%22%3Atrue%7D%2C%22data%22%3A%5B%7B%22key%22%3A%22BSPIFX9I%22%2C%22library%22%3A%7B%22id%22%3A11840969%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Vezz%5Cu00f9%20et%20al.%22%2C%22parsedDate%22%3A%222024-11-24%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EVezz%26%23xF9%3B%2C%20K.%2C%20Triolo%2C%20C.%2C%20Moulaee%2C%20K.%2C%20Pagot%2C%20G.%2C%20Ponti%2C%20A.%2C%20Pinna%2C%20N.%2C%20Neri%2C%20G.%2C%20Santangelo%2C%20S.%2C%20%26amp%3B%20Di%20Noto%2C%20V.%20%282024%29.%20Interplay%20Between%20Calcination%20Temperature%20and%20Alkaline%20Oxygen%20Evolution%20of%20Electrospun%20High%26%23×2010%3BEntropy%20%28Cr%3Csub%3E1%5C%2F5%3C%5C%2Fsub%3EMn%3Csub%3E1%5C%2F5%3C%5C%2Fsub%3EFe%3Csub%3E1%5C%2F5%3C%5C%2Fsub%3ECo%3Csub%3E1%5C%2F5%3C%5C%2Fsub%3ENi%3Csub%3E1%5C%2F5%3C%5C%2Fsub%3E%29%3Csub%3E3%3C%5C%2Fsub%3EO%3Csub%3E4%3C%5C%2Fsub%3E%20Nanofibers.%20%3Ci%3ESmall%3C%5C%2Fi%3E%2C%202408319.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1002%5C%2Fsmll.202408319%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1002%5C%2Fsmll.202408319%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Interplay%20Between%20Calcination%20Temperature%20and%20Alkaline%20Oxygen%20Evolution%20of%20Electrospun%20High%5Cu2010Entropy%20%28Cr%3Csub%3E1%5C%2F5%3C%5C%2Fsub%3EMn%3Csub%3E1%5C%2F5%3C%5C%2Fsub%3EFe%3Csub%3E1%5C%2F5%3C%5C%2Fsub%3ECo%3Csub%3E1%5C%2F5%3C%5C%2Fsub%3ENi%3Csub%3E1%5C%2F5%3C%5C%2Fsub%3E%29%3Csub%3E3%3C%5C%2Fsub%3EO%3Csub%3E4%3C%5C%2Fsub%3E%20Nanofibers%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Keti%22%2C%22lastName%22%3A%22Vezz%5Cu00f9%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Claudia%22%2C%22lastName%22%3A%22Triolo%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Kaveh%22%2C%22lastName%22%3A%22Moulaee%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Gioele%22%2C%22lastName%22%3A%22Pagot%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Alessandro%22%2C%22lastName%22%3A%22Ponti%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Nicola%22%2C%22lastName%22%3A%22Pinna%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Giovanni%22%2C%22lastName%22%3A%22Neri%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Saveria%22%2C%22lastName%22%3A%22Santangelo%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Vito%22%2C%22lastName%22%3A%22Di%20Noto%22%7D%5D%2C%22abstractNote%22%3A%22Abstract%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20Spinel%5Cu2010structured%20transition%20metal%20%28TM%29%20oxides%20have%20shown%20great%20potential%20as%20a%20sustainable%20alternative%20to%20platinum%20group%20metal%5Cu2010based%20electrocatalysts.%20Among%20them%2C%20high%5Cu2010entropy%20oxides%20%28HEOs%29%20with%20multiple%20TM%5Cu2010cation%20sites%20are%20suitable%20for%20engineering%20octahedral%20redox%5Cu2010active%20centers%20to%20enhance%20the%20catalyst%20reactivity.%20This%20paper%20reports%20on%20the%20preparation%20of%20electrospun%20%28Cr%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%201%5C%2F5%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20Mn%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%201%5C%2F5%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20Fe%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%201%5C%2F5%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20Co%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%201%5C%2F5%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20Ni%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%201%5C%2F5%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%29%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%203%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20O%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%204%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20nanofibers%20%28NFs%29%20and%20their%20evaluation%20as%20electrocatalysts.%20Its%20main%20aim%20is%20to%20unveil%20the%20nanostructural%20features%20that%20play%20a%20key%20role%20in%20the%20alkaline%20oxygen%20evolution%20reaction.%20Differing%20calcination%20temperature%20%28300%5Cu2212800%5Cu00a0%5Cu00b0C%29%20and%20duration%20%282%20or%204%5Cu00a0h%29%20leads%20to%20different%20morphology%20of%20the%20NFs%2C%20crystallinity%20of%20the%20oxide%2C%20density%20of%20defects%2C%20and%20cation%20distribution%20in%20the%20lattice%2C%20which%20reflect%20in%20different%20electrocatalytic%20behaviors.%20The%20best%20performance%20%28overpotential%20and%20Tafel%20slope%20at%2010%5Cu00a0mA%5Cu00a0cm%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu22122%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%3A%20325%5Cu00a0mV%20and%2040%5Cu00a0mV%5Cu00a0dec%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu22121%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%2C%20respectively%29%20pertains%20to%20the%20NFs%20calcined%20at%20400%5Cu00a0%5Cu00b0C%20for%202%5Cu00a0h.%20To%20gain%20a%20deeper%20understanding%20of%20their%20electrocatalytic%20properties%2C%20the%20pristine%20NFs%20are%20investigated%20by%20a%20combination%20of%20analytical%20techniques.%20In%20particular%2C%20broadband%20electric%20spectroscopy%20reveals%20that%20the%20mobility%20of%20oxygen%20vacancies%20in%20the%20best%20electrocatalyst%20is%20associated%20to%20very%20fast%20local%20dielectric%20relaxations%20of%20metal%20coordination%20octahedral%20geometries%20and%20experimentally%20demonstrates%20the%20key%20role%20of%20O%5Cu2010deficient%20octahedra.%22%2C%22date%22%3A%222024-11-24%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1002%5C%2Fsmll.202408319%22%2C%22ISSN%22%3A%221613-6810%2C%201613-6829%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fonlinelibrary.wiley.com%5C%2Fdoi%5C%2F10.1002%5C%2Fsmll.202408319%22%2C%22collections%22%3A%5B%22JKNPB296%22%5D%2C%22dateModified%22%3A%222024-12-10T13%3A12%3A24Z%22%7D%7D%2C%7B%22key%22%3A%22UHGCN85H%22%2C%22library%22%3A%7B%22id%22%3A11840969%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Fabozzi%20et%20al.%22%2C%22parsedDate%22%3A%222024-11-22%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EFabozzi%2C%20F.%20G.%2C%20Cojal%20Gonz%26%23xE1%3Blez%2C%20J.%20D.%2C%20Severin%2C%20N.%2C%20Rabe%2C%20J.%20P.%2C%20%26amp%3B%20Hecht%2C%20S.%20%282024%29.%20Voltage-Gated%20Switching%20of%20Moir%26%23xE9%3B%20Patterns%20in%20Epitaxial%20Molecular%20Crystals.%20%3Ci%3EACS%20Nano%3C%5C%2Fi%3E%2C%20%3Ci%3E18%3C%5C%2Fi%3E%2849%29%2C%2033664%26%23×2013%3B33670.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1021%5C%2Facsnano.4c12708%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1021%5C%2Facsnano.4c12708%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Voltage-Gated%20Switching%20of%20Moir%5Cu00e9%20Patterns%20in%20Epitaxial%20Molecular%20Crystals%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Filippo%20Giovanni%22%2C%22lastName%22%3A%22Fabozzi%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jos%5Cu00e9%20D.%22%2C%22lastName%22%3A%22Cojal%20Gonz%5Cu00e1lez%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Nikolai%22%2C%22lastName%22%3A%22Severin%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22J%5Cu00fcrgen%20P.%22%2C%22lastName%22%3A%22Rabe%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Stefan%22%2C%22lastName%22%3A%22Hecht%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%222024-11-22%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1021%5C%2Facsnano.4c12708%22%2C%22ISSN%22%3A%221936-0851%2C%201936-086X%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fpubs.acs.org%5C%2Fdoi%5C%2F10.1021%5C%2Facsnano.4c12708%22%2C%22collections%22%3A%5B%22JKNPB296%22%5D%2C%22dateModified%22%3A%222024-12-10T12%3A46%3A00Z%22%7D%7D%2C%7B%22key%22%3A%22YWPCY872%22%2C%22library%22%3A%7B%22id%22%3A11840969%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Blum%20et%20al.%22%2C%22parsedDate%22%3A%222024-11-15%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EBlum%2C%20V.%2C%20Asahi%2C%20R.%2C%20Autschbach%2C%20J.%2C%20Bannwarth%2C%20C.%2C%20Bihlmayer%2C%20G.%2C%20Bl%26%23xFC%3Bgel%2C%20S.%2C%20Burns%2C%20L.%20A.%2C%20Crawford%2C%20T.%20D.%2C%20Dawson%2C%20W.%2C%20De%20Jong%2C%20W.%20A.%2C%20Draxl%2C%20C.%2C%20Filippi%2C%20C.%2C%20Genovese%2C%20L.%2C%20Giannozzi%2C%20P.%2C%20Govind%2C%20N.%2C%20Hammes-Schiffer%2C%20S.%2C%20Hammond%2C%20J.%20R.%2C%20Hourahine%2C%20B.%2C%20Jain%2C%20A.%2C%20%26%23×2026%3B%20Windus%2C%20T.%20L.%20%282024%29.%20Roadmap%20on%20methods%20and%20software%20for%20electronic%20structure%20based%20simulations%20in%20chemistry%20and%20materials.%20%3Ci%3EElectronic%20Structure%3C%5C%2Fi%3E%2C%20%3Ci%3E6%3C%5C%2Fi%3E%284%29%2C%20042501.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1088%5C%2F2516-1075%5C%2Fad48ec%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1088%5C%2F2516-1075%5C%2Fad48ec%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Roadmap%20on%20methods%20and%20software%20for%20electronic%20structure%20based%20simulations%20in%20chemistry%20and%20materials%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Volker%22%2C%22lastName%22%3A%22Blum%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Ryoji%22%2C%22lastName%22%3A%22Asahi%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jochen%22%2C%22lastName%22%3A%22Autschbach%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Christoph%22%2C%22lastName%22%3A%22Bannwarth%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Gustav%22%2C%22lastName%22%3A%22Bihlmayer%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Stefan%22%2C%22lastName%22%3A%22Bl%5Cu00fcgel%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Lori%20A%22%2C%22lastName%22%3A%22Burns%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22T%20Daniel%22%2C%22lastName%22%3A%22Crawford%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22William%22%2C%22lastName%22%3A%22Dawson%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Wibe%20Albert%22%2C%22lastName%22%3A%22De%20Jong%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Claudia%22%2C%22lastName%22%3A%22Draxl%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Claudia%22%2C%22lastName%22%3A%22Filippi%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Luigi%22%2C%22lastName%22%3A%22Genovese%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Paolo%22%2C%22lastName%22%3A%22Giannozzi%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Niranjan%22%2C%22lastName%22%3A%22Govind%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Sharon%22%2C%22lastName%22%3A%22Hammes-Schiffer%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jeff%20R%22%2C%22lastName%22%3A%22Hammond%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Benjamin%22%2C%22lastName%22%3A%22Hourahine%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Anubhav%22%2C%22lastName%22%3A%22Jain%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Yosuke%22%2C%22lastName%22%3A%22Kanai%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Paul%20R%20C%22%2C%22lastName%22%3A%22Kent%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Ask%20Hjorth%22%2C%22lastName%22%3A%22Larsen%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Susi%22%2C%22lastName%22%3A%22Lehtola%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Xiaosong%22%2C%22lastName%22%3A%22Li%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Roland%22%2C%22lastName%22%3A%22Lindh%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Satoshi%22%2C%22lastName%22%3A%22Maeda%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Nancy%22%2C%22lastName%22%3A%22Makri%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jonathan%22%2C%22lastName%22%3A%22Moussa%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Takahito%22%2C%22lastName%22%3A%22Nakajima%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jessica%20A%22%2C%22lastName%22%3A%22Nash%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Micael%20J%20T%22%2C%22lastName%22%3A%22Oliveira%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Pansy%20D%22%2C%22lastName%22%3A%22Patel%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Giovanni%22%2C%22lastName%22%3A%22Pizzi%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Geoffrey%22%2C%22lastName%22%3A%22Pourtois%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Benjamin%20P%22%2C%22lastName%22%3A%22Pritchard%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Eran%22%2C%22lastName%22%3A%22Rabani%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Markus%22%2C%22lastName%22%3A%22Reiher%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Lucia%22%2C%22lastName%22%3A%22Reining%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Xinguo%22%2C%22lastName%22%3A%22Ren%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Mariana%22%2C%22lastName%22%3A%22Rossi%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22H%20Bernhard%22%2C%22lastName%22%3A%22Schlegel%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Nicola%22%2C%22lastName%22%3A%22Seriani%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Lyudmila%20V%22%2C%22lastName%22%3A%22Slipchenko%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Alexander%22%2C%22lastName%22%3A%22Thom%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Edward%20F%22%2C%22lastName%22%3A%22Valeev%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Benoit%22%2C%22lastName%22%3A%22Van%20Troeye%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Lucas%22%2C%22lastName%22%3A%22Visscher%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Vojt%5Cu011bch%22%2C%22lastName%22%3A%22Vl%5Cu010dek%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Hans-Joachim%22%2C%22lastName%22%3A%22Werner%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22David%20B%22%2C%22lastName%22%3A%22Williams-Young%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Theresa%20L.%22%2C%22lastName%22%3A%22Windus%22%7D%5D%2C%22abstractNote%22%3A%22Abstract%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20This%20Roadmap%20article%20provides%20a%20succinct%2C%20comprehensive%20overview%20of%20the%20state%20of%20electronic%20structure%20%28ES%29%20methods%20and%20software%20for%20molecular%20and%20materials%20simulations.%20Seventeen%20distinct%20sections%20collect%20insights%20by%2051%20leading%20scientists%20in%20the%20field.%20Each%20contribution%20addresses%20the%20status%20of%20a%20particular%20area%2C%20as%20well%20as%20current%20challenges%20and%20anticipated%20future%20advances%2C%20with%20a%20particular%20eye%20towards%20software%20related%20aspects%20and%20providing%20key%20references%20for%20further%20reading.%20Foundational%20sections%20cover%20density%20functional%20theory%20and%20its%20implementation%20in%20real-world%20simulation%20frameworks%2C%20Green%5Cu2019s%20function%20based%20many-body%20perturbation%20theory%2C%20wave-function%20based%20and%20stochastic%20ES%20approaches%2C%20relativistic%20effects%20and%20semiempirical%20ES%20theory%20approaches.%20Subsequent%20sections%20cover%20nuclear%20quantum%20effects%2C%20real-time%20propagation%20of%20the%20ES%2C%20challenges%20for%20computational%20spectroscopy%20simulations%2C%20and%20exploration%20of%20complex%20potential%20energy%20surfaces.%20The%20final%20sections%20summarize%20practical%20aspects%2C%20including%20computational%20workflows%20for%20complex%20simulation%20tasks%2C%20the%20impact%20of%20current%20and%20future%20high-performance%20computing%20architectures%2C%20software%20engineering%20practices%2C%20education%20and%20training%20to%20maintain%20and%20broaden%20the%20community%2C%20as%20well%20as%20the%20status%20of%20and%20needs%20for%20ES%20based%20modeling%20from%20the%20vantage%20point%20of%20industry%20environments.%20Overall%2C%20the%20field%20of%20ES%20software%20and%20method%20development%20continues%20to%20unlock%20immense%20opportunities%20for%20future%20scientific%20discovery%2C%20based%20on%20the%20growing%20ability%20of%20computations%20to%20reveal%20complex%20phenomena%2C%20processes%20and%20properties%20that%20are%20determined%20by%20the%20make-up%20of%20matter%20at%20the%20atomic%20scale%2C%20with%20high%20precision.%22%2C%22date%22%3A%222024-11-15%22%2C%22language%22%3A%22%22%2C%22DOI%22%3A%2210.1088%5C%2F2516-1075%5C%2Fad48ec%22%2C%22ISSN%22%3A%222516-1075%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fiopscience.iop.org%5C%2Farticle%5C%2F10.1088%5C%2F2516-1075%5C%2Fad48ec%22%2C%22collections%22%3A%5B%22JKNPB296%22%5D%2C%22dateModified%22%3A%222024-12-10T07%3A47%3A34Z%22%7D%7D%2C%7B%22key%22%3A%22SWKK6ZW3%22%2C%22library%22%3A%7B%22id%22%3A11840969%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Tara%20et%20al.%22%2C%22parsedDate%22%3A%222024-11-06%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3ETara%2C%20A.%2C%20Schr%26%23xF6%3Bder%2C%20V.%2C%20Paul%2C%20A.%2C%20Maticiuc%2C%20N.%2C%20Vasquez-Montoya%2C%20M.%20F.%2C%20Dagar%2C%20J.%2C%20Sharma%2C%20S.%2C%20Gupta%2C%20R.%2C%20List-Kratochvil%2C%20E.%20J.%20W.%2C%20Unger%2C%20E.%20L.%2C%20%26amp%3B%20Mathies%2C%20F.%20%282024%29.%20Inkjet-Printed%20FASn%3Csub%3E1%26%23×2013%3B%3Ci%3Ex%3C%5C%2Fi%3E%3C%5C%2Fsub%3E%20Pb%3Csub%3E%3Ci%3Ex%3C%5C%2Fi%3E%3C%5C%2Fsub%3EI%3Csub%3E3%3C%5C%2Fsub%3E-Based%20Perovskite%20Solar%20Cells.%20%3Ci%3EACS%20Applied%20Materials%20%26amp%3B%20Interfaces%3C%5C%2Fi%3E%2C%20%3Ci%3E16%3C%5C%2Fi%3E%2846%29%2C%2063520%26%23×2013%3B63527.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1021%5C%2Facsami.4c12477%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1021%5C%2Facsami.4c12477%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Inkjet-Printed%20FASn%3Csub%3E1%5Cu2013%3Ci%3Ex%3C%5C%2Fi%3E%3C%5C%2Fsub%3E%20Pb%3Csub%3E%3Ci%3Ex%3C%5C%2Fi%3E%3C%5C%2Fsub%3EI%3Csub%3E3%3C%5C%2Fsub%3E-Based%20Perovskite%20Solar%20Cells%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Ayush%22%2C%22lastName%22%3A%22Tara%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Vincent%22%2C%22lastName%22%3A%22Schr%5Cu00f6der%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Ananta%22%2C%22lastName%22%3A%22Paul%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Natalia%22%2C%22lastName%22%3A%22Maticiuc%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Manuel%20F.%22%2C%22lastName%22%3A%22Vasquez-Montoya%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Janardan%22%2C%22lastName%22%3A%22Dagar%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Susheel%22%2C%22lastName%22%3A%22Sharma%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Rockey%22%2C%22lastName%22%3A%22Gupta%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Emil%20J.%20W.%22%2C%22lastName%22%3A%22List-Kratochvil%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Eva%20L.%22%2C%22lastName%22%3A%22Unger%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Florian%22%2C%22lastName%22%3A%22Mathies%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%222024-11-06%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1021%5C%2Facsami.4c12477%22%2C%22ISSN%22%3A%221944-8244%2C%201944-8252%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fpubs.acs.org%5C%2Fdoi%5C%2F10.1021%5C%2Facsami.4c12477%22%2C%22collections%22%3A%5B%22JKNPB296%22%5D%2C%22dateModified%22%3A%222024-12-10T13%3A06%3A41Z%22%7D%7D%2C%7B%22key%22%3A%22PRB2MQNK%22%2C%22library%22%3A%7B%22id%22%3A11840969%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Orozco-Henao%20et%20al.%22%2C%22parsedDate%22%3A%222024-11-05%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EOrozco-Henao%2C%20J.%20M.%2C%20Al%26%23xED%3B%2C%20F.%20L.%2C%20Azc%26%23xE1%3Brate%2C%20J.%20C.%2C%20Robledo%20Candia%2C%20L.%20D.%2C%20Pasquevich%2C%20G.%2C%20Mendoza%20Z%26%23xE9%3Blis%2C%20P.%2C%20Haas%2C%20B.%2C%20Coogan%2C%20K.%2C%20Kirmse%2C%20H.%2C%20Koch%2C%20C.%20T.%2C%20Vericat%2C%20C.%2C%20Lavorato%2C%20G.%20C.%2C%20%26amp%3B%20Fonticelli%2C%20M.%20H.%20%282024%29.%20Oxidation%20Kinetics%20of%20Magnetite%20Nanoparticles%3A%20Blocking%20Effect%20of%20Surface%20Ligands%20and%20Implications%20for%20the%20Design%20of%20Magnetic%20Nanoheaters.%20%3Ci%3EChemistry%20of%20Materials%3C%5C%2Fi%3E%2C%20%3Ci%3E36%3C%5C%2Fi%3E%2822%29%2C%2011095%26%23×2013%3B11108.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1021%5C%2Facs.chemmater.4c01959%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1021%5C%2Facs.chemmater.4c01959%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Oxidation%20Kinetics%20of%20Magnetite%20Nanoparticles%3A%20Blocking%20Effect%20of%20Surface%20Ligands%20and%20Implications%20for%20the%20Design%20of%20Magnetic%20Nanoheaters%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Juan%20M.%22%2C%22lastName%22%3A%22Orozco-Henao%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Francisco%20L.%22%2C%22lastName%22%3A%22Al%5Cu00ed%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Julio%20C.%22%2C%22lastName%22%3A%22Azc%5Cu00e1rate%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Leonardo%20D.%22%2C%22lastName%22%3A%22Robledo%20Candia%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Gustavo%22%2C%22lastName%22%3A%22Pasquevich%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Pedro%22%2C%22lastName%22%3A%22Mendoza%20Z%5Cu00e9lis%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Benedikt%22%2C%22lastName%22%3A%22Haas%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Katrina%22%2C%22lastName%22%3A%22Coogan%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Holm%22%2C%22lastName%22%3A%22Kirmse%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Christoph%20T.%22%2C%22lastName%22%3A%22Koch%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Carolina%22%2C%22lastName%22%3A%22Vericat%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Gabriel%20C.%22%2C%22lastName%22%3A%22Lavorato%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Mariano%20H.%22%2C%22lastName%22%3A%22Fonticelli%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%222024-11-05%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1021%5C%2Facs.chemmater.4c01959%22%2C%22ISSN%22%3A%220897-4756%2C%201520-5002%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fpubs.acs.org%5C%2Fdoi%5C%2F10.1021%5C%2Facs.chemmater.4c01959%22%2C%22collections%22%3A%5B%22JKNPB296%22%5D%2C%22dateModified%22%3A%222024-12-10T12%3A51%3A22Z%22%7D%7D%2C%7B%22key%22%3A%22LQKVNC85%22%2C%22library%22%3A%7B%22id%22%3A11840969%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22G%5Cu00e4risch%20et%20al.%22%2C%22parsedDate%22%3A%222024-11-03%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EG%26%23xE4%3Brisch%2C%20F.%2C%20Schr%26%23xF6%3Bder%2C%20V.%2C%20List%26%23×2010%3BKratochvil%2C%20E.%20J.%20W.%2C%20%26amp%3B%20Ligorio%2C%20G.%20%282024%29.%20Scalable%20Fabrication%20of%20Neuromorphic%20Devices%20Using%20Inkjet%20Printing%20for%20the%20Deposition%20of%20Organic%20Mixed%20Ionic%26%23×2010%3BElectronic%20Conductor.%20%3Ci%3EAdvanced%20Electronic%20Materials%3C%5C%2Fi%3E%2C%202400479.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1002%5C%2Faelm.202400479%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1002%5C%2Faelm.202400479%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Scalable%20Fabrication%20of%20Neuromorphic%20Devices%20Using%20Inkjet%20Printing%20for%20the%20Deposition%20of%20Organic%20Mixed%20Ionic%5Cu2010Electronic%20Conductor%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Fabian%22%2C%22lastName%22%3A%22G%5Cu00e4risch%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Vincent%22%2C%22lastName%22%3A%22Schr%5Cu00f6der%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Emil%20J.%20W.%22%2C%22lastName%22%3A%22List%5Cu2010Kratochvil%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Giovanni%22%2C%22lastName%22%3A%22Ligorio%22%7D%5D%2C%22abstractNote%22%3A%22Abstract%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20Recent%20advancements%20in%20artificial%20intelligence%20%28AI%29%20have%20highlighted%20the%20critical%20need%20for%20energy%5Cu2010efficient%20hardware%20solutions%2C%20especially%20in%20edge%5Cu2010computing%20applications.%20However%2C%20traditional%20AI%20approaches%20are%20plagued%20by%20significant%20power%20consumption.%20In%20response%2C%20researchers%20have%20turned%20to%20biomimetic%20strategies%2C%20drawing%20inspiration%20from%20the%20ion%5Cu2010mediated%20operating%20principle%20of%20biological%20synapses%2C%20to%20develop%20organic%20neuromorphic%20devices%20as%20promising%20alternatives.%20Organic%20mixed%20ionic%5Cu2010electronic%20conductor%20%28OMIEC%29%20materials%20have%20emerged%20as%20particularly%20noteworthy%20in%20this%20field%2C%20due%20to%20their%20potential%20for%20enhancing%20neuromorphic%20computing%20capabilities.%20Together%20with%20device%20performance%2C%20it%20is%20crucial%20to%20select%20devices%20that%20allow%20fabrication%20via%20scalable%20techniques.%20This%20study%20investigates%20the%20fabrication%20of%20OMIEC%5Cu2010based%20neuromorphic%20devices%20using%20inkjet%20printing%2C%20providing%20a%20scalable%20and%20material%5Cu2010efficient%20approach.%20Employing%20a%20commercially%20available%20polymer%20mixed%20ionic%5Cu2010electronic%20conductor%20%28BTEM%5Cu2010PPV%29%20and%20a%20lithium%20salt%2C%20inkjet%5Cu2010printed%20devices%20exhibit%20performance%20comparable%20to%20those%20fabricated%20via%20traditional%20spin%5Cu2010coating%20methods.%20These%20two%5Cu2010terminal%20neuromorphic%20devices%20demonstrate%20functionality%20analogous%20to%20literature%5Cu2010known%20devices%20and%20demonstrate%20promising%20frequency%5Cu2010dependent%20short%5Cu2010term%20plasticity.%20Furthermore%2C%20comparative%20studies%20with%20previous%20light%5Cu2010emitting%20electrochemical%20cells%20%28LECs%29%20and%20neuromorphic%20OMIEC%20devices%20validate%20the%20efficacy%20of%20inkjet%20printing%20as%20a%20potential%20fabrication%20technique.%20The%20findings%20suggest%20that%20inkjet%20printing%20is%20suitable%20for%20large%5Cu2010scale%20production%2C%20offering%20reproducible%20and%20stable%20fabrication%20processes.%20By%20adopting%20the%20OMIEC%20material%20system%2C%20inkjet%20printing%20holds%20the%20potential%20for%20further%20enhancing%20device%20performance%20and%20functionality.%20Overall%2C%20this%20study%20underscores%20the%20viability%20of%20inkjet%20printing%20as%20a%20scalable%20fabrication%20method%20for%20OMIEC%5Cu2010based%20neuromorphic%20devices%2C%20paving%20the%20way%20for%20advancements%20in%20AI%20hardware.%22%2C%22date%22%3A%222024-11-03%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1002%5C%2Faelm.202400479%22%2C%22ISSN%22%3A%222199-160X%2C%202199-160X%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fonlinelibrary.wiley.com%5C%2Fdoi%5C%2F10.1002%5C%2Faelm.202400479%22%2C%22collections%22%3A%5B%22JKNPB296%22%5D%2C%22dateModified%22%3A%222024-12-10T13%3A08%3A40Z%22%7D%7D%2C%7B%22key%22%3A%22TGHLVSCH%22%2C%22library%22%3A%7B%22id%22%3A11840969%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Yang%20et%20al.%22%2C%22parsedDate%22%3A%222024-10-31%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EYang%2C%20W.%2C%20Guo%2C%20Z.%2C%20Hengge%2C%20M.%2C%20%26amp%3B%20List-Kratochvil%2C%20E.%20J.%20W.%20%282024%29.%20Plasma-activated%20copper-alkanolamine%20precursor%20paste%20for%20printed%20flexible%20antenna%3A%20formulation%2C%20mechanism%2C%20and%20performance%20evaluation.%20%3Ci%3EJournal%20of%20Materials%20Chemistry%20C%3C%5C%2Fi%3E%2C%2010.1039.D4TC03346A.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1039%5C%2FD4TC03346A%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1039%5C%2FD4TC03346A%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Plasma-activated%20copper-alkanolamine%20precursor%20paste%20for%20printed%20flexible%20antenna%3A%20formulation%2C%20mechanism%2C%20and%20performance%20evaluation%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Wendong%22%2C%22lastName%22%3A%22Yang%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Zihao%22%2C%22lastName%22%3A%22Guo%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Michael%22%2C%22lastName%22%3A%22Hengge%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Emil%20J.%20W.%22%2C%22lastName%22%3A%22List-Kratochvil%22%7D%5D%2C%22abstractNote%22%3A%22Plasma%20activation%20mechanism%20and%20antenna%20application%20of%20a%20printable%20copper%20precursor%20paste%20were%20explored%2C%20demonstrating%20its%20feasibility%20for%20use%20in%20flexible%20wireless%20electronics.%20%5Cn%20%20%20%20%20%20%20%20%20%20%2C%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20Copper-based%20pastes%20have%20attracted%20significant%20attention%20for%20printed%20electronic%20applications%20because%20of%20their%20low%20cost%20and%20high%20conductivity.%20Copper%20precursor%20pastes%20are%20easier%20to%20prepare%2C%20exhibit%20long-term%20stability%20and%20do%20not%20have%20oxidation%20issues%20during%20preparation%20and%20storage%2C%20when%20compared%20to%20copper%20micro-sized%20flakes%20and%20nanoparticle%20pastes.%20Up%20to%20now%2C%20copper%20precursor%20pastes%20activated%20by%20plasma%20have%20been%20rarely%20studied%2C%20and%20their%20activation%20mechanism%20is%20not%20clear.%20Furthermore%2C%20little%20attention%20has%20been%20paid%20to%20the%20application%20of%20these%20pastes%20in%20wireless%20electronic%20devices.%20In%20this%20paper%2C%20therefore%2C%20we%20formulated%20a%20plasma-activated%20copper%5Cu2013alkanolamine%20complex%20precursor%20paste%20for%20antenna%20applications.%20The%20paste%20was%20formulated%20only%20using%20copper%28%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20ii%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%29%20formate%20and%20excess%202-amino-2-methyl-1%2C2-propanediamine%2C%20which%20exhibited%20favorable%20flowability%20for%20screen%20printing.%20Copper%20films%20with%20good%20conductivity%20were%20produced%20on%20PET%20substrates%20by%20plasma%20sintering%20this%20paste.%20The%20effects%20of%20plasma%20sintering%20time%20on%20the%20properties%20of%20the%20copper%20film%20were%20explored%20and%20correlations%20between%20them%20were%20established.%20A%20possible%20plasma%20activation%20mechanism%20was%20proposed.%20Finally%2C%20a%20flexible%20ultra-wideband%20antenna%20with%20notch%20properties%20was%20fabricated%20with%20the%20copper%20paste%2C%20demonstrating%20its%20feasibility%20in%20wireless%20electronics%20applications.%22%2C%22date%22%3A%222024-10-31%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1039%5C%2FD4TC03346A%22%2C%22ISSN%22%3A%222050-7526%2C%202050-7534%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fxlink.rsc.org%5C%2F%3FDOI%3DD4TC03346A%22%2C%22collections%22%3A%5B%22JKNPB296%22%5D%2C%22dateModified%22%3A%222024-12-10T13%3A07%3A47Z%22%7D%7D%2C%7B%22key%22%3A%22TIA2KKBB%22%2C%22library%22%3A%7B%22id%22%3A11840969%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Monga%20et%20al.%22%2C%22parsedDate%22%3A%222024-10-28%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EMonga%2C%20S.%2C%20Jain%2C%20M.%2C%20Draxl%2C%20C.%2C%20%26amp%3B%20Bhattacharya%2C%20S.%20%282024%29.%20Theoretical%20insights%20into%20inorganic%20antiperovskite%20nitrides%20%28%3Ci%3EX%3C%5C%2Fi%3E%3Csub%3E3%3C%5C%2Fsub%3ENA%3A%20%3Ci%3EX%3C%5C%2Fi%3E%20%3D%20Mg%2C%20Ca%2C%20Sr%2C%20Ba%3B%20%3Ci%3EA%3C%5C%2Fi%3E%20%3D%20As%2C%20Sb%29%3A%20An%20emerging%20class%20of%20materials%20for%20photovoltaics.%20%3Ci%3EPhysical%20Review%20Materials%3C%5C%2Fi%3E%2C%20%3Ci%3E8%3C%5C%2Fi%3E%2810%29%2C%20105403.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1103%5C%2FPhysRevMaterials.8.105403%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1103%5C%2FPhysRevMaterials.8.105403%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Theoretical%20insights%20into%20inorganic%20antiperovskite%20nitrides%20%28%3Ci%3EX%3C%5C%2Fi%3E%3Csub%3E3%3C%5C%2Fsub%3ENA%3A%20%3Ci%3EX%3C%5C%2Fi%3E%20%3D%20Mg%2C%20Ca%2C%20Sr%2C%20Ba%3B%20%3Ci%3EA%3C%5C%2Fi%3E%20%3D%20As%2C%20Sb%29%3A%20An%20emerging%20class%20of%20materials%20for%20photovoltaics%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Sanchi%22%2C%22lastName%22%3A%22Monga%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Manjari%22%2C%22lastName%22%3A%22Jain%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Claudia%22%2C%22lastName%22%3A%22Draxl%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Saswata%22%2C%22lastName%22%3A%22Bhattacharya%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%222024-10-28%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1103%5C%2FPhysRevMaterials.8.105403%22%2C%22ISSN%22%3A%222475-9953%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Flink.aps.org%5C%2Fdoi%5C%2F10.1103%5C%2FPhysRevMaterials.8.105403%22%2C%22collections%22%3A%5B%22JKNPB296%22%5D%2C%22dateModified%22%3A%222024-12-10T07%3A50%3A59Z%22%7D%7D%2C%7B%22key%22%3A%2283VW9KEN%22%2C%22library%22%3A%7B%22id%22%3A11840969%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Nerl%20et%20al.%22%2C%22parsedDate%22%3A%222024-10-26%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3ENerl%2C%20H.%20C.%2C%20Guerrero-Felipe%2C%20J.%20P.%2C%20Valencia%2C%20A.%20M.%2C%20Elyas%2C%20K.%20F.%2C%20H%26%23xF6%3Bflich%2C%20K.%2C%20Koch%2C%20C.%20T.%2C%20%26amp%3B%20Cocchi%2C%20C.%20%282024%29.%20Mapping%20the%20energy-momentum%20dispersion%20of%20hBN%20excitons%20and%20hybrid%20plasmons%20in%20hBN-WSe%3Csub%3E2%3C%5C%2Fsub%3E%20heterostructures.%20%3Ci%3ENpj%202D%20Materials%20and%20Applications%3C%5C%2Fi%3E%2C%20%3Ci%3E8%3C%5C%2Fi%3E%281%29%2C%2068.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1038%5C%2Fs41699-024-00500-w%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1038%5C%2Fs41699-024-00500-w%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Mapping%20the%20energy-momentum%20dispersion%20of%20hBN%20excitons%20and%20hybrid%20plasmons%20in%20hBN-WSe%3Csub%3E2%3C%5C%2Fsub%3E%20heterostructures%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Hannah%20C.%22%2C%22lastName%22%3A%22Nerl%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Juan%20Pablo%22%2C%22lastName%22%3A%22Guerrero-Felipe%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Ana%20M.%22%2C%22lastName%22%3A%22Valencia%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Khairi%20Fahad%22%2C%22lastName%22%3A%22Elyas%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Katja%22%2C%22lastName%22%3A%22H%5Cu00f6flich%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Christoph%20T.%22%2C%22lastName%22%3A%22Koch%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Caterina%22%2C%22lastName%22%3A%22Cocchi%22%7D%5D%2C%22abstractNote%22%3A%22Abstract%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20Heterostructures%20obtained%20by%20combining%20two-dimensional%20%282D%29%20sheets%20are%20widely%20investigated%20as%20a%20platform%20for%20designing%20new%20materials%20with%20customised%20characteristics.%20Transition%20metal%20dichalcogenides%20%28TMDCs%29%20are%20often%20combined%20with%20hexagonal%20boron%20nitride%20%28hBN%29%20to%20enhance%20their%20excitonic%20resonances.%20However%2C%20little%20is%20known%20about%20how%20stacking%20affects%20excitons%20and%20plasmons%20in%20TMDCs%20or%20their%20mutual%20interactions.%20Here%2C%20we%20combine%20momentum-resolved%20electron%20energy-loss%20spectroscopy%20with%20first-principles%20calculations%20to%20study%20the%20energy-momentum%20dispersion%20of%20plasmons%20in%20multi-layer%20WSe%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%202%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20-hBN%20heterostructures%20as%20well%20as%20in%20their%20isolated%20components.%20The%20dispersion%20of%20the%20high-momentum%20excitons%20of%20hBN%2C%20alone%20and%20in%20combination%20with%20WSe%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%202%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%2C%20is%20mapped%20across%20the%20entire%20Brillouin%20zone.%20Signatures%20of%20hybridisation%20in%20the%20plasmon%20resonances%20and%20some%20of%20the%20excitons%20suggest%20that%20the%20contribution%20of%20hBN%20cannot%20be%20neglected%20when%20interpreting%20the%20response%20of%20such%20a%20heterostructure.%20The%20consequences%20of%20using%20hBN%20as%20an%20encapsulant%20for%20TMDCs%20are%20also%20discussed.%22%2C%22date%22%3A%222024-10-26%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1038%5C%2Fs41699-024-00500-w%22%2C%22ISSN%22%3A%222397-7132%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fwww.nature.com%5C%2Farticles%5C%2Fs41699-024-00500-w%22%2C%22collections%22%3A%5B%22JKNPB296%22%5D%2C%22dateModified%22%3A%222024-12-10T12%3A48%3A54Z%22%7D%7D%2C%7B%22key%22%3A%22LY4WGG4F%22%2C%22library%22%3A%7B%22id%22%3A11840969%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Yang%20et%20al.%22%2C%22parsedDate%22%3A%222024-10-25%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EYang%2C%20W.%2C%20Zhao%2C%20X.%2C%20Nan%2C%20J.%2C%20Hengge%2C%20M.%2C%20%26amp%3B%20List%26%23×2010%3BKratochvil%2C%20E.%20J.%20W.%20%282024%29.%20Copper%20Paste%20Printed%20Paper%26%23×2010%3BBased%20Dual%26%23×2010%3BBand%20Antenna%20for%20Wearable%20Wireless%20Electronics.%20%3Ci%3EAdvanced%20Electronic%20Materials%3C%5C%2Fi%3E%2C%202400522.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1002%5C%2Faelm.202400522%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1002%5C%2Faelm.202400522%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Copper%20Paste%20Printed%20Paper%5Cu2010Based%20Dual%5Cu2010Band%20Antenna%20for%20Wearable%20Wireless%20Electronics%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Wendong%22%2C%22lastName%22%3A%22Yang%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Xun%22%2C%22lastName%22%3A%22Zhao%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jingchang%22%2C%22lastName%22%3A%22Nan%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Michael%22%2C%22lastName%22%3A%22Hengge%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Emil%20J.%20W.%22%2C%22lastName%22%3A%22List%5Cu2010Kratochvil%22%7D%5D%2C%22abstractNote%22%3A%22Abstract%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20Wearable%20wireless%20electronics%20is%20becoming%20a%20significant%20research%20area%20because%20of%20the%20unique%20features%20of%20this%20technology.%20Within%20this%20field%20printed%20antennas%20are%20the%20key%20electrical%20component%20accomplishing%20the%20signal%20transmission%20and%20energy%20harvesting%20tasks%20and%20at%20the%20same%20these%20antennas%20need%20to%20be%20lightweight%2C%20environmentally%20friendly%2C%20safe%20to%20wear%2C%20and%20easy%20to%20conform.%20Currently%2C%20the%20majority%20of%20available%20paper%5Cu2010based%20antennas%20are%20designed%20for%20RFID%2C%20sensing%2C%20UWB%2C%20WLAN%2C%20and%20medical%20applications%2C%20with%20just%20a%20few%20being%20utilized%20in%20wearable%20applications%2C%20particularly%20for%20wireless%20body%20area%20network%20%28WBAN%29.%20Furthermore%2C%20few%20studies%20have%20been%20conducted%20on%20the%20usage%20of%20printable%20copper%20conductive%20materials%20and%20low%5Cu2010temperature%20plasma%20technique%20for%20the%20fabrication%20of%20such%20antennas.%20This%20study%20demonstrates%20the%20realization%20of%20a%20dual%5Cu2010band%20paper%5Cu2010based%20wearable%20antenna%20by%20screen%5Cu2010printing%20of%20a%20plasma%5Cu2010sintered%20conductive%20copper%20paste.%20The%20copper%20paste%2C%20composed%20of%2051%20wt%25%20solid%20particles%2C%20can%20easily%20produce%20desired%20conductive%20patterns%20on%20photo%20paper%20after%20printing%20and%20a%20subsequent%20plasma%20sintering%2C%20with%20a%20good%20adhesion.%20The%20antenna%20designed%20on%20photopaper%20operates%20in%20the%20frequency%20bands%20of%201.73%5Cu20132.55%20GHz%20and%207.66%5Cu20138.89%20GHz.%20Free%5Cu2010space%20simulation%20and%20measurement%20results%20reveal%20that%20the%20antenna%20exhibits%20stable%20radiation%20performance%20in%20the%20targeted%20WBAN%20%282.4%5Cu20132.4835%20GHz%29%20and%20X%20uplink%20%287.9%5Cu20138.4%20GHz%29%20frequency%20bands%2C%20together%20with%20low%20profile%2C%20excellent%20conformality%20and%20acceptable%20SAR%20values%20on%20the%20body%20and%20no%20electronic%20waste%20formed%20after%20disposal%2C%20making%20it%20a%20competitive%20candidate%20for%20usage%20in%20wearable%20wireless%20electronics.%22%2C%22date%22%3A%222024-10-25%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1002%5C%2Faelm.202400522%22%2C%22ISSN%22%3A%222199-160X%2C%202199-160X%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fonlinelibrary.wiley.com%5C%2Fdoi%5C%2F10.1002%5C%2Faelm.202400522%22%2C%22collections%22%3A%5B%22JKNPB296%22%5D%2C%22dateModified%22%3A%222024-12-10T13%3A09%3A02Z%22%7D%7D%2C%7B%22key%22%3A%22UAANCSLF%22%2C%22library%22%3A%7B%22id%22%3A11840969%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Wagner%20et%20al.%22%2C%22parsedDate%22%3A%222024-10-17%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EWagner%2C%20T.%2C%20Kraft%2C%20R.%2C%20Nowak%2C%20F.%2C%20Berger%2C%20D.%2C%20G%26%23xFC%3Bnther%2C%20C.%20M.%2C%20%26%23xC7%3Belik%2C%20H.%2C%20Koch%2C%20C.%20T.%2C%20%26amp%3B%20Lehmann%2C%20M.%20%282024%29.%20The%20reference%20window%20for%20reduced%20perturbation%20of%20the%20reference%20wave%20in%20electrical%20biasing%20off-axis%20electron%20holography.%20%3Ci%3EUltramicroscopy%3C%5C%2Fi%3E%2C%20%3Ci%3E267%3C%5C%2Fi%3E%2C%20114060.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1016%5C%2Fj.ultramic.2024.114060%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1016%5C%2Fj.ultramic.2024.114060%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22The%20reference%20window%20for%20reduced%20perturbation%20of%20the%20reference%20wave%20in%20electrical%20biasing%20off-axis%20electron%20holography%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Tolga%22%2C%22lastName%22%3A%22Wagner%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Robin%22%2C%22lastName%22%3A%22Kraft%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Franz%22%2C%22lastName%22%3A%22Nowak%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Dirk%22%2C%22lastName%22%3A%22Berger%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Christian%20M.%22%2C%22lastName%22%3A%22G%5Cu00fcnther%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22H%5Cu00fcseyin%22%2C%22lastName%22%3A%22%5Cu00c7elik%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Christoph%20T.%22%2C%22lastName%22%3A%22Koch%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Michael%22%2C%22lastName%22%3A%22Lehmann%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%222024-10-17%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1016%5C%2Fj.ultramic.2024.114060%22%2C%22ISSN%22%3A%2203043991%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Flinkinghub.elsevier.com%5C%2Fretrieve%5C%2Fpii%5C%2FS0304399124001396%22%2C%22collections%22%3A%5B%22JKNPB296%22%5D%2C%22dateModified%22%3A%222024-12-10T12%3A49%3A54Z%22%7D%7D%2C%7B%22key%22%3A%22I7SVYHRV%22%2C%22library%22%3A%7B%22id%22%3A11840969%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Haas%20et%20al.%22%2C%22parsedDate%22%3A%222024-10-10%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EHaas%2C%20B.%2C%20Koch%2C%20C.%20T.%2C%20%26amp%3B%20Rez%2C%20P.%20%282024%29.%20Perspective%20on%20atomic-resolution%20vibrational%20electron%20energy-loss%20spectroscopy.%20%3Ci%3EApplied%20Physics%20Letters%3C%5C%2Fi%3E%2C%20%3Ci%3E125%3C%5C%2Fi%3E%2815%29%2C%20150502.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1063%5C%2F5.0231688%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1063%5C%2F5.0231688%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Perspective%20on%20atomic-resolution%20vibrational%20electron%20energy-loss%20spectroscopy%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Benedikt%22%2C%22lastName%22%3A%22Haas%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Christoph%20T.%22%2C%22lastName%22%3A%22Koch%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Peter%22%2C%22lastName%22%3A%22Rez%22%7D%5D%2C%22abstractNote%22%3A%22Instrumentation%20developments%20in%20electron%20energy-loss%20spectroscopy%20in%20the%20scanning%20transmission%20electron%20microscope%20one%20decade%20ago%20paved%20the%20way%20for%20combining%20milli-electron%20volt%20energy%20resolution%20in%20spectroscopy%20with%20%5Cu00c5ngstr%5Cu00f6m-sized%20electron%20probes%2C%20unlocking%20unexplored%20realms%20for%20solid%20state%20physics%20at%20the%20nanometer%20scale.%20The%20fundamental%20understanding%20of%20the%20scattering%20processes%20involved%20has%20made%20it%20possible%20to%20separate%20atomically%20localized%20signals%2C%20providing%20insight%20into%20vibrations%20at%20the%20atomic%20scale.%20In%20this%20Letter%2C%20we%20outline%20the%20experimental%2C%20conceptual%2C%20and%20theoretical%20advances%20in%20this%20field%20and%20also%20make%20comparisons%20with%20tip-based%20optical%20techniques%20before%20discussing%20future%20perspectives%20of%20this%20exciting%20method.%20Optimization%20of%20dark-field%20signal%20collection%20will%20play%20a%20fundamental%20role%20in%20making%20this%20technique%20more%20widely%20applicable%20to%20a%20range%20of%20material%20problems.%20The%20benefits%20of%20adding%20momentum-resolution%20will%20also%20be%20discussed%2C%20and%20a%20powerful%20acquisition%20scheme%20will%20be%20proposed.%22%2C%22date%22%3A%222024-10-10%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1063%5C%2F5.0231688%22%2C%22ISSN%22%3A%220003-6951%2C%201077-3118%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fpubs.aip.org%5C%2Fapl%5C%2Farticle%5C%2F125%5C%2F15%5C%2F150502%5C%2F3316347%5C%2FPerspective-on-atomic-resolution-vibrational%22%2C%22collections%22%3A%5B%22JKNPB296%22%5D%2C%22dateModified%22%3A%222024-12-10T12%3A52%3A13Z%22%7D%7D%2C%7B%22key%22%3A%22LH98LKS2%22%2C%22library%22%3A%7B%22id%22%3A11840969%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Koliyot%20et%20al.%22%2C%22parsedDate%22%3A%222024-09-23%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EKoliyot%2C%20R.%20D.%2C%20Maticiuc%2C%20N.%2C%20Mathies%2C%20F.%2C%20Levine%2C%20I.%2C%20Dagar%2C%20J.%2C%20Paramasivam%2C%20G.%2C%20Mallick%2C%20S.%2C%20Narasinga%20Rao%2C%20T.%2C%20Unger%2C%20E.%2C%20%26amp%3B%20Veerappan%2C%20G.%20%282024%29.%20Hybrid%20Aromatic%20Fluoro%20Amine%26%23×2010%3BModified%20SnO%3Csub%3E2%3C%5C%2Fsub%3E%20Electron%20Transport%20Layers%20in%20Perovskite%20Solar%20Cells%20for%20Enhanced%20Efficiency%20and%20Stability.%20%3Ci%3ESolar%20RRL%3C%5C%2Fi%3E%2C%20%3Ci%3E8%3C%5C%2Fi%3E%2820%29%2C%202300921.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1002%5C%2Fsolr.202300921%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1002%5C%2Fsolr.202300921%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Hybrid%20Aromatic%20Fluoro%20Amine%5Cu2010Modified%20SnO%3Csub%3E2%3C%5C%2Fsub%3E%20Electron%20Transport%20Layers%20in%20Perovskite%20Solar%20Cells%20for%20Enhanced%20Efficiency%20and%20Stability%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Reshma%20Dileep%22%2C%22lastName%22%3A%22Koliyot%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Natalia%22%2C%22lastName%22%3A%22Maticiuc%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Florian%22%2C%22lastName%22%3A%22Mathies%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Igal%22%2C%22lastName%22%3A%22Levine%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Janardan%22%2C%22lastName%22%3A%22Dagar%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Gopinath%22%2C%22lastName%22%3A%22Paramasivam%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Sudhanshu%22%2C%22lastName%22%3A%22Mallick%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Tata%22%2C%22lastName%22%3A%22Narasinga%20Rao%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Eva%22%2C%22lastName%22%3A%22Unger%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Ganapathy%22%2C%22lastName%22%3A%22Veerappan%22%7D%5D%2C%22abstractNote%22%3A%22SnO%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%202%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20is%20a%20widely%20used%20electron%5Cu2010transporting%20layer%20%28ETL%29%20in%20perovskite%20solar%20cells.%20Despite%20the%20high%20compatibility%20with%20the%20perovskite%20absorber%20layers%2C%20the%20presence%20of%20traps%20at%20the%20perovskite%7CSnO%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%202%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20interface%20results%20in%20performance%20losses%3B%20hence%2C%20their%20modification%20to%20improve%20the%20performance%20and%20stability%20of%20perovskite%20solar%20cells%20%28PSCs%29%20is%20therefore%20important.%20Herein%2C%20the%20SnO%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%202%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20ETL%20is%20enhanced%20by%20incorporating%20a%20bifunctional%20aromatic%20amino%20fluorine%20molecule%20into%20the%20SnO%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%202%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20precursor%20solution.%20The%20fluorine%20molecule%20is%20found%20to%20partially%20substitute%20the%20Sn%20and%20alter%20the%20energy%20levels%20while%20the%20aniline%20group%20aids%20in%20regulating%20the%20nucleation%5C%2Fgrowth%20rate%20of%20the%20perovskite%20crystalline%20films.%20Herein%2C%20a%20hole%20transporting%20material%5Cu2010free%20carbon%5Cu2010based%20PSCs%20%28CPSCs%29%20is%20fabricated.%20It%20is%20found%20that%20perovskite%20absorber%20layers%20deposited%20on%20these%20modified%20SnO%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%202%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20hybrid%20layers%20have%20higher%20optoelectronic%20quality%2C%20resulting%20in%20enhanced%20photovoltaic%20performance%2C%20device%20stability%2C%20and%20reduced%20hysteresis%20in%20CPSCs.%20Devices%20made%20with%20the%20modified%20hybrid%20SnO%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%202%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20layers%20exhibit%20power%20conversion%20efficiencies%20of%2015.6%25%20significantly%20better%20than%20unmodified%20SnO%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%202%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20with%2013.5%25.%20CPSCs%20with%20these%20modified%20SnO%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%202%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20films%20also%20exhibit%20remarkable%20retention%20of%2088.7%25%20of%20their%20initial%20PCE%20for%20a%20shelf%5Cu2010life%20period%20%28ISOS%5Cu2010D1I%29%20exceeding%201200%5Cu2009h.%22%2C%22date%22%3A%222024-09-23%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1002%5C%2Fsolr.202300921%22%2C%22ISSN%22%3A%222367-198X%2C%202367-198X%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fonlinelibrary.wiley.com%5C%2Fdoi%5C%2F10.1002%5C%2Fsolr.202300921%22%2C%22collections%22%3A%5B%22JKNPB296%22%5D%2C%22dateModified%22%3A%222024-12-10T13%3A17%3A25Z%22%7D%7D%2C%7B%22key%22%3A%22KHWGSTNB%22%2C%22library%22%3A%7B%22id%22%3A11840969%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Kuban%20et%20al.%22%2C%22parsedDate%22%3A%222024-09-19%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EKuban%2C%20M.%2C%20Rigamonti%2C%20S.%2C%20%26amp%3B%20Draxl%2C%20C.%20%282024%29.%20MADAS%3A%20a%20Python%20framework%20for%20assessing%20similarity%20in%20materials-science%20data.%20%3Ci%3EDigital%20Discovery%3C%5C%2Fi%3E%2C%20%3Ci%3E3%3C%5C%2Fi%3E%2812%29%2C%202448%26%23×2013%3B2457.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1039%5C%2FD4DD00258J%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1039%5C%2FD4DD00258J%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22MADAS%3A%20a%20Python%20framework%20for%20assessing%20similarity%20in%20materials-science%20data%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Martin%22%2C%22lastName%22%3A%22Kuban%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Santiago%22%2C%22lastName%22%3A%22Rigamonti%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Claudia%22%2C%22lastName%22%3A%22Draxl%22%7D%5D%2C%22abstractNote%22%3A%22MADAS%20is%20a%20computational%20framework%20that%20supports%20all%20steps%20of%20similarity%20analysis%2C%20including%20the%20collection%20and%20storage%20of%20data%2C%20the%20development%20and%20computation%20of%20fingerprints%2C%20metrics%20to%20measure%20similarity%2C%20and%20data%20analytics%20and%20machine%20learning.%20%5Cn%20%20%20%20%20%20%20%20%20%20%2C%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20Computational%20materials%20science%20produces%20large%20quantities%20of%20data%2C%20both%20in%20terms%20of%20high-throughput%20calculations%20and%20individual%20studies.%20Extracting%20knowledge%20from%20this%20large%20and%20heterogeneous%20pool%20of%20data%20is%20challenging%20due%20to%20the%20wide%20variety%20of%20computational%20methods%20and%20approximations%2C%20resulting%20in%20significant%20veracity%20in%20the%20sheer%20amount%20of%20available%20data.%20One%20way%20of%20dealing%20with%20the%20problem%20is%20using%20similarity%20measures%20to%20group%20data%2C%20but%20also%20to%20understand%20where%20possible%20differences%20may%20come%20from.%20Here%2C%20we%20present%20%2C%20a%20Python%20framework%20for%20computing%20similarity%20relations%20between%20material%20properties.%20It%20can%20be%20used%20to%20automate%20the%20download%20of%20data%20from%20various%20sources%2C%20compute%20descriptors%20and%20similarities%20between%20materials%2C%20analyze%20the%20relationship%20between%20materials%20through%20their%20properties%2C%20and%20can%20incorporate%20a%20variety%20of%20existing%20machine%20learning%20methods.%20We%20explain%20the%20architecture%20of%20the%20package%20and%20demonstrate%20its%20power%20with%20representative%20examples.%22%2C%22date%22%3A%222024-09-19%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1039%5C%2FD4DD00258J%22%2C%22ISSN%22%3A%222635-098X%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fxlink.rsc.org%5C%2F%3FDOI%3DD4DD00258J%22%2C%22collections%22%3A%5B%22JKNPB296%22%5D%2C%22dateModified%22%3A%222024-12-10T07%3A52%3A20Z%22%7D%7D%2C%7B%22key%22%3A%22428XVPYA%22%2C%22library%22%3A%7B%22id%22%3A11840969%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Puls%20et%20al.%22%2C%22parsedDate%22%3A%222024-09-18%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EPuls%2C%20S.%2C%20Nazmutdinova%2C%20E.%2C%20Kalyk%2C%20F.%2C%20Woolley%2C%20H.%20M.%2C%20Thomsen%2C%20J.%20F.%2C%20Cheng%2C%20Z.%2C%20Fauchier-Magnan%2C%20A.%2C%20Gautam%2C%20A.%2C%20Gockeln%2C%20M.%2C%20Ham%2C%20S.-Y.%2C%20Hasan%2C%20M.%20T.%2C%20Jeong%2C%20M.-G.%2C%20Hiraoka%2C%20D.%2C%20Kim%2C%20J.%20S.%2C%20Kutsch%2C%20T.%2C%20Lelotte%2C%20B.%2C%20Minnmann%2C%20P.%2C%20Mi%26%23xDF%3B%2C%20V.%2C%20Motohashi%2C%20K.%2C%20%26%23×2026%3B%20Vargas-Barbosa%2C%20N.%20M.%20%282024%29.%20Benchmarking%20the%20reproducibility%20of%20all-solid-state%20battery%20cell%20performance.%20%3Ci%3ENature%20Energy%3C%5C%2Fi%3E%2C%20%3Ci%3E9%3C%5C%2Fi%3E%2810%29%2C%201310%26%23×2013%3B1320.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1038%5C%2Fs41560-024-01634-3%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1038%5C%2Fs41560-024-01634-3%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Benchmarking%20the%20reproducibility%20of%20all-solid-state%20battery%20cell%20performance%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Sebastian%22%2C%22lastName%22%3A%22Puls%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Elina%22%2C%22lastName%22%3A%22Nazmutdinova%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Fariza%22%2C%22lastName%22%3A%22Kalyk%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Henry%20M.%22%2C%22lastName%22%3A%22Woolley%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jesper%20Frost%22%2C%22lastName%22%3A%22Thomsen%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Zhu%22%2C%22lastName%22%3A%22Cheng%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Adrien%22%2C%22lastName%22%3A%22Fauchier-Magnan%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Ajay%22%2C%22lastName%22%3A%22Gautam%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Michael%22%2C%22lastName%22%3A%22Gockeln%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22So-Yeon%22%2C%22lastName%22%3A%22Ham%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Md%20Toukir%22%2C%22lastName%22%3A%22Hasan%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Min-Gi%22%2C%22lastName%22%3A%22Jeong%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Daiki%22%2C%22lastName%22%3A%22Hiraoka%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jong%20Seok%22%2C%22lastName%22%3A%22Kim%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Tobias%22%2C%22lastName%22%3A%22Kutsch%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Barth%5Cu00e9l%5Cu00e9my%22%2C%22lastName%22%3A%22Lelotte%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Philip%22%2C%22lastName%22%3A%22Minnmann%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Vanessa%22%2C%22lastName%22%3A%22Mi%5Cu00df%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Kota%22%2C%22lastName%22%3A%22Motohashi%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Douglas%20Lars%22%2C%22lastName%22%3A%22Nelson%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Frans%22%2C%22lastName%22%3A%22Ooms%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Francesco%22%2C%22lastName%22%3A%22Piccolo%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Christian%22%2C%22lastName%22%3A%22Plank%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Maria%22%2C%22lastName%22%3A%22Rosner%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Stephanie%20E.%22%2C%22lastName%22%3A%22Sandoval%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Eva%22%2C%22lastName%22%3A%22Schlautmann%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Robin%22%2C%22lastName%22%3A%22Schuster%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Dominic%22%2C%22lastName%22%3A%22Spencer-Jolly%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Yipeng%22%2C%22lastName%22%3A%22Sun%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Bairav%20S.%22%2C%22lastName%22%3A%22Vishnugopi%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Ruizhuo%22%2C%22lastName%22%3A%22Zhang%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Huang%22%2C%22lastName%22%3A%22Zheng%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Philipp%22%2C%22lastName%22%3A%22Adelhelm%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Torsten%22%2C%22lastName%22%3A%22Brezesinski%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Peter%20G.%22%2C%22lastName%22%3A%22Bruce%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Michael%22%2C%22lastName%22%3A%22Danzer%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Mario%22%2C%22lastName%22%3A%22El%20Kazzi%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Hubert%22%2C%22lastName%22%3A%22Gasteiger%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Kelsey%20B.%22%2C%22lastName%22%3A%22Hatzell%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Akitoshi%22%2C%22lastName%22%3A%22Hayashi%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Felix%22%2C%22lastName%22%3A%22Hippauf%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22J%5Cu00fcrgen%22%2C%22lastName%22%3A%22Janek%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Yoon%20Seok%22%2C%22lastName%22%3A%22Jung%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Matthew%20T.%22%2C%22lastName%22%3A%22McDowell%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Ying%20Shirley%22%2C%22lastName%22%3A%22Meng%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Partha%20P.%22%2C%22lastName%22%3A%22Mukherjee%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Saneyuki%22%2C%22lastName%22%3A%22Ohno%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Bernhard%22%2C%22lastName%22%3A%22Roling%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Atsushi%22%2C%22lastName%22%3A%22Sakuda%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Julian%22%2C%22lastName%22%3A%22Schwenzel%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Xueliang%22%2C%22lastName%22%3A%22Sun%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Claire%22%2C%22lastName%22%3A%22Villevieille%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Marnix%22%2C%22lastName%22%3A%22Wagemaker%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Wolfgang%20G.%22%2C%22lastName%22%3A%22Zeier%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Nella%20M.%22%2C%22lastName%22%3A%22Vargas-Barbosa%22%7D%5D%2C%22abstractNote%22%3A%22Abstract%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20The%20interlaboratory%20comparability%20and%20reproducibility%20of%20all-solid-state%20battery%20cell%20cycling%20performance%20are%20poorly%20understood%20due%20to%20the%20lack%20of%20standardized%20set-ups%20and%20assembly%20parameters.%20This%20study%20quantifies%20the%20extent%20of%20this%20variability%20by%20providing%20commercially%20sourced%20battery%20materials%5Cu2014LiNi%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%200.6%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20Mn%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%200.2%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20Co%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%200.2%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20O%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%202%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20for%20the%20positive%20electrode%2C%20Li%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%206%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20PS%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%205%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20Cl%20as%20the%20solid%20electrolyte%20and%20indium%20for%20the%20negative%20electrode%5Cu2014to%2021%20research%20groups.%20Each%20group%20was%20asked%20to%20use%20their%20own%20cell%20assembly%20protocol%20but%20follow%20a%20specific%20electrochemical%20protocol.%20The%20results%20show%20large%20variability%20in%20assembly%20and%20electrochemical%20performance%2C%20including%20differences%20in%20processing%20pressures%2C%20pressing%20durations%20and%20In-to-Li%20ratios.%20Despite%20this%2C%20an%20initial%20open%20circuit%20voltage%20of%202.5%20and%202.7%5Cu2009V%20vs%20Li%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%2B%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5C%2FLi%20is%20a%20good%20predictor%20of%20successful%20cycling%20for%20cells%20using%20these%20electroactive%20materials.%20We%20suggest%20a%20set%20of%20parameters%20for%20reporting%20all-solid-state%20battery%20cycling%20results%20and%20advocate%20for%20reporting%20data%20in%20triplicate.%22%2C%22date%22%3A%222024-09-18%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1038%5C%2Fs41560-024-01634-3%22%2C%22ISSN%22%3A%222058-7546%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fwww.nature.com%5C%2Farticles%5C%2Fs41560-024-01634-3%22%2C%22collections%22%3A%5B%22JKNPB296%22%5D%2C%22dateModified%22%3A%222024-12-10T07%3A42%3A34Z%22%7D%7D%2C%7B%22key%22%3A%22T3S3BYXL%22%2C%22library%22%3A%7B%22id%22%3A11840969%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Asyuda%20et%20al.%22%2C%22parsedDate%22%3A%222024-09-12%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EAsyuda%2C%20A.%2C%20M%26%23xFC%3Bller%2C%20J.%2C%20Gholami%2C%20M.%20F.%2C%20Zykov%2C%20A.%2C%20Pithan%2C%20L.%2C%20Koch%2C%20C.%20T.%2C%20Rabe%2C%20J.%20P.%2C%20Opitz%2C%20A.%2C%20%26amp%3B%20Kowarik%2C%20S.%20%282024%29.%20Laser-induced%20tuning%20of%20crystallization%20in%20tetracene%20thin%20films.%20%3Ci%3EPhysical%20Chemistry%20Chemical%20Physics%3C%5C%2Fi%3E%2C%20%3Ci%3E26%3C%5C%2Fi%3E%2838%29%2C%2024841%26%23×2013%3B24848.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1039%5C%2FD4CP02430C%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1039%5C%2FD4CP02430C%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Laser-induced%20tuning%20of%20crystallization%20in%20tetracene%20thin%20films%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Andika%22%2C%22lastName%22%3A%22Asyuda%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Johannes%22%2C%22lastName%22%3A%22M%5Cu00fcller%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Mohammad%20Fardin%22%2C%22lastName%22%3A%22Gholami%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Anton%22%2C%22lastName%22%3A%22Zykov%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Linus%22%2C%22lastName%22%3A%22Pithan%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Christoph%20T.%22%2C%22lastName%22%3A%22Koch%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22J%5Cu00fcrgen%20P.%22%2C%22lastName%22%3A%22Rabe%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Andreas%22%2C%22lastName%22%3A%22Opitz%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Stefan%22%2C%22lastName%22%3A%22Kowarik%22%7D%5D%2C%22abstractNote%22%3A%22Laser%20illumination%20acts%20a%20novel%20growth%20parameter%20for%20thin%20films%2C%20leading%20to%20larger%20crystallite%20size%20and%20molecular%20alignment%20in%20tetracene%20growth.%20Laser%20control%20is%20distinct%20from%20traditional%20thermal%20growth%20and%20paves%20the%20way%20for%20novel%20materials.%20%5Cn%20%20%20%20%20%20%20%20%20%20%2C%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20This%20study%20explores%20how%20laser%20light%20affects%20the%20morphology%20of%20tetracene%20films%2C%20and%20it%20presents%20novel%20strategies%20for%20improving%20the%20creation%20of%20thin%20films%20used%20in%20%28opto-%29electronic%20devices.%20We%20demonstrate%20that%20laser%20light%20%28532%20nm%2C%201.1%20W%20mm%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu22122%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%29%2C%20applied%20during%20tetracene%20deposition%2C%20not%20only%20increases%20grain%20size%20but%20also%20induces%20photoalignment.%20The%20observed%20effects%20arise%20from%20enhanced%20molecular%20diffusion%2C%20resulting%20from%20energy%20transferred%20by%20light%20to%20the%20molecules%20after%20adsorption%2C%20but%20not%20from%20heating%20the%20substrate%20surface%20underneath.%20We%20observe%20that%20linearly%20polarized%20light%20promotes%20photoalignment%2C%20while%20increased%20crystallite%20sizes%20occurs%20with%20both%20linear%20and%20circular%20polarizations.%20We%20propose%20an%20Ostwald%20ripening%20process%20facilitated%20by%20laser%20illumination%2C%20where%20smaller%20crystallites%20get%20optically%20heated%20and%20dissolve%2C%20allowing%20molecules%20to%20surmount%20step-edge%20barriers%20and%20assemble%20into%20larger%20crystallites.%20Importantly%2C%20the%20crystallite%20sizes%20achieved%20with%20laser%20illumination%20surpass%20those%20attainable%20by%20substrate%20heating%20alone.%20The%20study%20demonstrates%20that%20laser%20illumination%20acts%20as%20a%20promising%20new%20parameter%20for%20controlling%20thin%20film%20properties%20and%20is%20distinct%20from%20growth%20control%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20via%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20substrate%20temperature%20and%20growth%20rate.%20Light%20control%20also%20includes%20the%20ability%20for%20lateral%20patterning%2C%20with%20implications%20for%20the%20future%20of%20molecular%20materials%20and%20their%20manufacturing%20technologies.%22%2C%22date%22%3A%222024-09-12%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1039%5C%2FD4CP02430C%22%2C%22ISSN%22%3A%221463-9076%2C%201463-9084%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fxlink.rsc.org%5C%2F%3FDOI%3DD4CP02430C%22%2C%22collections%22%3A%5B%22JKNPB296%22%5D%2C%22dateModified%22%3A%222024-12-10T12%3A53%3A10Z%22%7D%7D%2C%7B%22key%22%3A%22X3KSPKXT%22%2C%22library%22%3A%7B%22id%22%3A11840969%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Rabe%22%2C%22parsedDate%22%3A%222024-09-03%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3ERabe%2C%20J.%20P.%20%282024%29.%20Matters%20of%20Free%20Energy%20and%20a%20Tesseract.%20In%20F.%20Bauer%2C%20Y.%20Kim%2C%20S.%20Marienberg%2C%20%26amp%3B%20W.%20Sch%26%23xE4%3Bffner%20%28Eds.%29%2C%20%3Ci%3EToward%20a%20New%20Culture%20of%20the%20Material%3C%5C%2Fi%3E%20%28pp.%20281%26%23×2013%3B290%29.%20De%20Gruyter.%20https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1515%5C%2F9783110714883-019%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22bookSection%22%2C%22title%22%3A%22Matters%20of%20Free%20Energy%20and%20a%20Tesseract%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22editor%22%2C%22firstName%22%3A%22Frank%22%2C%22lastName%22%3A%22Bauer%22%7D%2C%7B%22creatorType%22%3A%22editor%22%2C%22firstName%22%3A%22Yoonha%22%2C%22lastName%22%3A%22Kim%22%7D%2C%7B%22creatorType%22%3A%22editor%22%2C%22firstName%22%3A%22Sabine%22%2C%22lastName%22%3A%22Marienberg%22%7D%2C%7B%22creatorType%22%3A%22editor%22%2C%22firstName%22%3A%22Wolfgang%22%2C%22lastName%22%3A%22Sch%5Cu00e4ffner%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22J%5Cu00fcrgen%20P.%22%2C%22lastName%22%3A%22Rabe%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22bookTitle%22%3A%22Toward%20a%20New%20Culture%20of%20the%20Material%22%2C%22date%22%3A%222024-09-03%22%2C%22language%22%3A%22%22%2C%22ISBN%22%3A%229783110714883%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fwww.degruyter.com%5C%2Fdocument%5C%2Fdoi%5C%2F10.1515%5C%2F9783110714883-019%5C%2Fhtml%22%2C%22collections%22%3A%5B%22JKNPB296%22%5D%2C%22dateModified%22%3A%222024-12-10T13%3A14%3A55Z%22%7D%7D%2C%7B%22key%22%3A%22468B93RJ%22%2C%22library%22%3A%7B%22id%22%3A11840969%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Jozwiak%20et%20al.%22%2C%22parsedDate%22%3A%222024-09-03%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EJozwiak%2C%20E.%2C%20Phan%2C%20A.%2C%20Schultz%2C%20T.%2C%20Koch%2C%20N.%2C%20%26amp%3B%20Pinna%2C%20N.%20%282024%29.%20Structure%20Properties%20Correlations%20on%20Nickel%26%23×2010%3BIron%20Oxide%20Catalysts%20Deposited%20by%20Atomic%20Layer%20Deposition%20for%20the%20Oxygen%20Evolution%20Reaction%20in%20Alkaline%20Media.%20%3Ci%3EAdvanced%20Energy%20and%20Sustainability%20Research%3C%5C%2Fi%3E%2C%20%3Ci%3E5%3C%5C%2Fi%3E%2811%29%2C%202400091.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1002%5C%2Faesr.202400091%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1002%5C%2Faesr.202400091%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Structure%20Properties%20Correlations%20on%20Nickel%5Cu2010Iron%20Oxide%20Catalysts%20Deposited%20by%20Atomic%20Layer%20Deposition%20for%20the%20Oxygen%20Evolution%20Reaction%20in%20Alkaline%20Media%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Estelle%22%2C%22lastName%22%3A%22Jozwiak%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Anna%22%2C%22lastName%22%3A%22Phan%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Thorsten%22%2C%22lastName%22%3A%22Schultz%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Norbert%22%2C%22lastName%22%3A%22Koch%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Nicola%22%2C%22lastName%22%3A%22Pinna%22%7D%5D%2C%22abstractNote%22%3A%22Thermal%20atomic%20layer%20deposition%20%28ALD%29%20is%20used%20for%20the%20first%20time%20to%20deposit%20iron%5Cu2010nickel%20oxides%20onto%20carbon%20nanotubes%20in%20a%20ternary%20process%20to%20produce%20a%20wide%20range%20of%20mixed%20oxide%20thin%20films.%20When%20using%20ferrocene%20%28FeCp%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%202%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%29%20and%20nickelocene%20%28NiCp%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%202%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%29%20with%20ozone%20%28O%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%203%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%29%20as%20metals%20and%20oxygen%20sources%2C%20respectively%2C%20a%20competition%20between%20the%20metal%20precursors%20and%20the%20growth%20modes%20is%20observed.%20Indeed%2C%20while%20ferrocene%20promotes%20a%202D%5Cu2010growth%2C%20nickelocene%20prefers%20a%203D%5Cu2010growth.%20Although%20both%20precursors%20are%20homoleptic%20metallocenes%2C%20they%20behave%20differently%20in%20the%20ALD%20of%20their%20respective%20metal%20oxide%2C%20leading%20to%20unexpected%20atomic%20ratios%20and%20films%20morphologies%20of%20the%20iron%5Cu2010nickel%20oxides.%20The%202Fe%3A1Ni%20sample%20displays%20the%20best%20performances%20in%20the%20electrochemical%20water%20oxidation%20%28oxygen%20evolution%20reaction%29%20exhibiting%20an%20overpotential%20of%20267%5Cu2009mV%20at%20a%20current%20density%20of%2010%5Cu2009mA%5Cu2009cm%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu22121%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%2C%20a%20Tafel%20slope%20of%2036.8%5Cu2009mV%5Cu2009dec%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu22121%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%2C%20as%20well%20as%20a%20good%20stability%20after%2015%5Cu2009h%20of%20continuous%20operation.%22%2C%22date%22%3A%222024-09-03%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1002%5C%2Faesr.202400091%22%2C%22ISSN%22%3A%222699-9412%2C%202699-9412%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fonlinelibrary.wiley.com%5C%2Fdoi%5C%2F10.1002%5C%2Faesr.202400091%22%2C%22collections%22%3A%5B%22JKNPB296%22%5D%2C%22dateModified%22%3A%222024-12-10T12%3A54%3A30Z%22%7D%7D%2C%7B%22key%22%3A%22U5LBJRVL%22%2C%22library%22%3A%7B%22id%22%3A11840969%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Zuber%20et%20al.%22%2C%22parsedDate%22%3A%222024-08-30%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EZuber%2C%20A.%2C%20Oikonomou%2C%20I.%20M.%2C%20Gannon%2C%20L.%2C%20Chunin%2C%20I.%2C%20Reith%2C%20L.%2C%20Can%2C%20B.%2C%20Lounasvuori%2C%20M.%2C%20Schultz%2C%20T.%2C%20Koch%2C%20N.%2C%20McGuinness%2C%20C.%2C%20Menezes%2C%20P.%20W.%2C%20Nicolosi%2C%20V.%2C%20%26amp%3B%20Browne%2C%20M.%20P.%20%282024%29.%20Effect%20of%20the%20Precursor%20Metal%20Salt%20on%20the%20Oxygen%20Evolution%20Reaction%20for%20NiFe%20Oxide%20Materials.%20%3Ci%3EChemElectroChem%3C%5C%2Fi%3E%2C%20%3Ci%3E11%3C%5C%2Fi%3E%2817%29%2C%20e202400151.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1002%5C%2Fcelc.202400151%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1002%5C%2Fcelc.202400151%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Effect%20of%20the%20Precursor%20Metal%20Salt%20on%20the%20Oxygen%20Evolution%20Reaction%20for%20NiFe%20Oxide%20Materials%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Axel%22%2C%22lastName%22%3A%22Zuber%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Ilias%20M.%22%2C%22lastName%22%3A%22Oikonomou%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Lee%22%2C%22lastName%22%3A%22Gannon%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Igor%22%2C%22lastName%22%3A%22Chunin%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Lukas%22%2C%22lastName%22%3A%22Reith%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Belin%22%2C%22lastName%22%3A%22Can%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Mailis%22%2C%22lastName%22%3A%22Lounasvuori%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Thorsten%22%2C%22lastName%22%3A%22Schultz%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Norbert%22%2C%22lastName%22%3A%22Koch%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Cormac%22%2C%22lastName%22%3A%22McGuinness%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Prashanth%20W.%22%2C%22lastName%22%3A%22Menezes%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Valeria%22%2C%22lastName%22%3A%22Nicolosi%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Michelle%20P.%22%2C%22lastName%22%3A%22Browne%22%7D%5D%2C%22abstractNote%22%3A%22Abstract%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20Bimetallic%20nickel%5Cu2010iron%20based%20oxides%20are%20regarded%20as%20one%20of%20the%20most%20promising%20catalysts%20for%20the%20oxygen%20evolution%20reaction%20%28OER%29.%20In%20this%20study%2C%20we%20show%20that%20the%20precursor%20metal%20salts%20can%20affect%20the%20OER%20activity%20of%20the%20resulting%20Ni%5C%2FFe%20oxide%20under%20the%20same%20hydrothermal%20synthesis%20conditions.%20Pure%20sulfate%2C%20pure%20nitrate%20and%20mixed%20sulfate%5C%2Fnitrate%20metal%20salts%20were%20used%20to%20fabricate%20NiFe%20based%20oxide%20materials%20and%20to%20study%20the%20importance%20of%20the%20precursor%20choice%20for%20the%20OER.%20The%20results%20show%20that%20the%20nature%20of%20the%20precursor%20used%20in%20the%20synthesis%20of%20the%20bimetallic%20nickel%5Cu2010iron%20materials%20can%20influence%20different%20multi%5Cu2010phase%20catalysts%20to%20form%20which%20effects%20the%20OER.%22%2C%22date%22%3A%222024-08-30%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1002%5C%2Fcelc.202400151%22%2C%22ISSN%22%3A%222196-0216%2C%202196-0216%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fchemistry-europe.onlinelibrary.wiley.com%5C%2Fdoi%5C%2F10.1002%5C%2Fcelc.202400151%22%2C%22collections%22%3A%5B%22JKNPB296%22%5D%2C%22dateModified%22%3A%222024-12-10T12%3A59%3A45Z%22%7D%7D%2C%7B%22key%22%3A%22U6RR7DDB%22%2C%22library%22%3A%7B%22id%22%3A11840969%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Rigamonti%20et%20al.%22%2C%22parsedDate%22%3A%222024-08-30%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3ERigamonti%2C%20S.%2C%20Troppenz%2C%20M.%2C%20Kuban%2C%20M.%2C%20H%26%23xFC%3Bbner%2C%20A.%2C%20%26amp%3B%20Draxl%2C%20C.%20%282024%29.%20CELL%3A%20a%20Python%20package%20for%20cluster%20expansion%20with%20a%20focus%20on%20complex%20alloys.%20%3Ci%3ENpj%20Computational%20Materials%3C%5C%2Fi%3E%2C%20%3Ci%3E10%3C%5C%2Fi%3E%281%29%2C%20195.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1038%5C%2Fs41524-024-01363-x%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1038%5C%2Fs41524-024-01363-x%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22CELL%3A%20a%20Python%20package%20for%20cluster%20expansion%20with%20a%20focus%20on%20complex%20alloys%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Santiago%22%2C%22lastName%22%3A%22Rigamonti%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Maria%22%2C%22lastName%22%3A%22Troppenz%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Martin%22%2C%22lastName%22%3A%22Kuban%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Axel%22%2C%22lastName%22%3A%22H%5Cu00fcbner%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Claudia%22%2C%22lastName%22%3A%22Draxl%22%7D%5D%2C%22abstractNote%22%3A%22Abstract%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20We%20present%20the%20Python%20package%20%2C%20which%20provides%20a%20modular%20approach%20to%20the%20cluster%20expansion%20%28CE%29%20method.%20%20can%20treat%20a%20wide%20variety%20of%20substitutional%20systems%2C%20including%20one-%2C%20two-%2C%20and%20three-dimensional%20alloys%2C%20in%20a%20general%20multi-component%20and%20multi-sublattice%20framework.%20It%20is%20capable%20of%20dealing%20with%20complex%20materials%20comprising%20several%20atoms%20in%20their%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20parent%20lattice%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20.%20%20uses%20state-of-the-art%20techniques%20for%20the%20construction%20of%20training%20data%20sets%2C%20model%20selection%2C%20and%20finite-temperature%20simulations.%20The%20user%20interface%20consists%20of%20well-documented%20Python%20classes%20and%20modules%20%28%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20http%3A%5C%2F%5C%2Fsol.physik.hu-berlin.de%5C%2Fcell%5C%2F%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%29.%20%20also%20provides%20visualization%20utilities%20and%20can%20be%20interfaced%20with%20virtually%20any%20ab%20initio%20package%2C%20total-energy%20codes%20based%20on%20interatomic%20potentials%2C%20and%20more.%20The%20usage%20and%20capabilities%20of%20%20are%20illustrated%20by%20a%20number%20of%20examples%2C%20comprising%20a%20Cu-Pt%20surface%20alloy%20with%20oxygen%20adsorption%2C%20featuring%20two%20coupled%20binary%20sublattices%2C%20and%20the%20thermodynamic%20analysis%20of%20its%20order-disorder%20transition%3B%20the%20demixing%20transition%20and%20lattice-constant%20bowing%20of%20the%20Si-Ge%20alloy%3B%20and%20an%20iterative%20CE%20approach%20for%20a%20complex%20clathrate%20compound%20with%20a%20parent%20lattice%20consisting%20of%2054%20atoms.%22%2C%22date%22%3A%222024-08-30%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1038%5C%2Fs41524-024-01363-x%22%2C%22ISSN%22%3A%222057-3960%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fwww.nature.com%5C%2Farticles%5C%2Fs41524-024-01363-x%22%2C%22collections%22%3A%5B%22JKNPB296%22%5D%2C%22dateModified%22%3A%222024-12-10T07%3A48%3A32Z%22%7D%7D%2C%7B%22key%22%3A%22KP28TR5Z%22%2C%22library%22%3A%7B%22id%22%3A11840969%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Ahrling%20et%20al.%22%2C%22parsedDate%22%3A%222024-08-14%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EAhrling%2C%20R.%2C%20Mitdank%2C%20R.%2C%20Popp%2C%20A.%2C%20Rehm%2C%20J.%2C%20Akhtar%2C%20A.%2C%20Galazka%2C%20Z.%2C%20%26amp%3B%20Fischer%2C%20S.%20F.%20%282024%29.%20Resistive%20and%20ballistic%20phonon%20transport%20in%20%3Ci%3E%26%23x3B2%3B%3C%5C%2Fi%3E-Ga%3Csub%3E2%3C%5C%2Fsub%3EO%3Csub%3E3%3C%5C%2Fsub%3E.%20%3Ci%3EPhysical%20Review%20B%3C%5C%2Fi%3E%2C%20%3Ci%3E110%3C%5C%2Fi%3E%288%29%2C%20085302.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1103%5C%2FPhysRevB.110.085302%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1103%5C%2FPhysRevB.110.085302%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Resistive%20and%20ballistic%20phonon%20transport%20in%20%3Ci%3E%5Cu03b2%3C%5C%2Fi%3E-Ga%3Csub%3E2%3C%5C%2Fsub%3EO%3Csub%3E3%3C%5C%2Fsub%3E%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22R.%22%2C%22lastName%22%3A%22Ahrling%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22R.%22%2C%22lastName%22%3A%22Mitdank%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22A.%22%2C%22lastName%22%3A%22Popp%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22J.%22%2C%22lastName%22%3A%22Rehm%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22A.%22%2C%22lastName%22%3A%22Akhtar%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Z.%22%2C%22lastName%22%3A%22Galazka%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22S.%20F.%22%2C%22lastName%22%3A%22Fischer%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%222024-08-14%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1103%5C%2FPhysRevB.110.085302%22%2C%22ISSN%22%3A%222469-9950%2C%202469-9969%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Flink.aps.org%5C%2Fdoi%5C%2F10.1103%5C%2FPhysRevB.110.085302%22%2C%22collections%22%3A%5B%22JKNPB296%22%5D%2C%22dateModified%22%3A%222024-09-03T12%3A14%3A33Z%22%7D%7D%2C%7B%22key%22%3A%22THFEC3E2%22%2C%22library%22%3A%7B%22id%22%3A11840969%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Levine%20et%20al.%22%2C%22parsedDate%22%3A%222024-08-08%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3ELevine%2C%20I.%2C%20Menzel%2C%20D.%2C%20Musiienko%2C%20A.%2C%20MacQueen%2C%20R.%2C%20Romano%2C%20N.%2C%20Vasquez-Montoya%2C%20M.%2C%20Unger%2C%20E.%2C%20Mora%20Perez%2C%20C.%2C%20Forde%2C%20A.%2C%20Neukirch%2C%20A.%20J.%2C%20Korte%2C%20L.%2C%20%26amp%3B%20Dittrich%2C%20T.%20%282024%29.%20Revisiting%20Sub-Band%20Gap%20Emission%20Mechanism%20in%202D%20Halide%20Perovskites%3A%20The%20Role%20of%20Defect%20States.%20%3Ci%3EJournal%20of%20the%20American%20Chemical%20Society%3C%5C%2Fi%3E%2C%20%3Ci%3E146%3C%5C%2Fi%3E%2833%29%2C%2023437%26%23×2013%3B23448.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1021%5C%2Fjacs.4c06621%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1021%5C%2Fjacs.4c06621%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Revisiting%20Sub-Band%20Gap%20Emission%20Mechanism%20in%202D%20Halide%20Perovskites%3A%20The%20Role%20of%20Defect%20States%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Igal%22%2C%22lastName%22%3A%22Levine%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Dorothee%22%2C%22lastName%22%3A%22Menzel%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Artem%22%2C%22lastName%22%3A%22Musiienko%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Rowan%22%2C%22lastName%22%3A%22MacQueen%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Natalia%22%2C%22lastName%22%3A%22Romano%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Manuel%22%2C%22lastName%22%3A%22Vasquez-Montoya%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Eva%22%2C%22lastName%22%3A%22Unger%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Carlos%22%2C%22lastName%22%3A%22Mora%20Perez%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Aaron%22%2C%22lastName%22%3A%22Forde%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Amanda%20J.%22%2C%22lastName%22%3A%22Neukirch%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Lars%22%2C%22lastName%22%3A%22Korte%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Thomas%22%2C%22lastName%22%3A%22Dittrich%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%222024-08-08%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1021%5C%2Fjacs.4c06621%22%2C%22ISSN%22%3A%220002-7863%2C%201520-5126%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fpubs.acs.org%5C%2Fdoi%5C%2F10.1021%5C%2Fjacs.4c06621%22%2C%22collections%22%3A%5B%22JKNPB296%22%5D%2C%22dateModified%22%3A%222024-09-03T12%3A25%3A58Z%22%7D%7D%2C%7B%22key%22%3A%22DTNEIPCZ%22%2C%22library%22%3A%7B%22id%22%3A11840969%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Schmiedecke%20et%20al.%22%2C%22parsedDate%22%3A%222024-08-02%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3ESchmiedecke%2C%20B.%2C%20Wu%2C%20B.%2C%20Schultz%2C%20T.%2C%20Emerenciano%2C%20A.%20A.%2C%20Sharma%2C%20N.%2C%20Douglas-Henry%2C%20D.%20A.%2C%20Koutsioukis%2C%20A.%2C%20G%26%23xF6%3Br%26%23xFC%3Bry%26%23×131%3Blmaz%2C%20M.%20T.%2C%20Nicolosi%2C%20V.%2C%20Petit%2C%20T.%2C%20Koch%2C%20N.%2C%20Sofer%2C%20Z.%2C%20%26amp%3B%20Browne%2C%20M.%20P.%20%282024%29.%20Enhancing%20the%20oxygen%20evolution%20reaction%20activity%20of%20CuCo%20based%20hydroxides%20with%20V%3Csub%3E2%3C%5C%2Fsub%3ECT%3Csub%3E%3Ci%3Ex%3C%5C%2Fi%3E%3C%5C%2Fsub%3E%20MXene.%20%3Ci%3EJournal%20of%20Materials%20Chemistry%20A%3C%5C%2Fi%3E%2C%2010.1039.D4TA02700K.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1039%5C%2FD4TA02700K%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1039%5C%2FD4TA02700K%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Enhancing%20the%20oxygen%20evolution%20reaction%20activity%20of%20CuCo%20based%20hydroxides%20with%20V%3Csub%3E2%3C%5C%2Fsub%3ECT%3Csub%3E%3Ci%3Ex%3C%5C%2Fi%3E%3C%5C%2Fsub%3E%20MXene%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Bastian%22%2C%22lastName%22%3A%22Schmiedecke%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Bing%22%2C%22lastName%22%3A%22Wu%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Thorsten%22%2C%22lastName%22%3A%22Schultz%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Aline%20Alencar%22%2C%22lastName%22%3A%22Emerenciano%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Namrata%22%2C%22lastName%22%3A%22Sharma%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Danielle%20A.%22%2C%22lastName%22%3A%22Douglas-Henry%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Apostolos%22%2C%22lastName%22%3A%22Koutsioukis%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Mehmet%20Turan%22%2C%22lastName%22%3A%22G%5Cu00f6r%5Cu00fcry%5Cu0131lmaz%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Valeria%22%2C%22lastName%22%3A%22Nicolosi%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Tristan%22%2C%22lastName%22%3A%22Petit%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Norbert%22%2C%22lastName%22%3A%22Koch%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Zdenek%22%2C%22lastName%22%3A%22Sofer%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Michelle%20P.%22%2C%22lastName%22%3A%22Browne%22%7D%5D%2C%22abstractNote%22%3A%22V%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%202%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20CT%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20x%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20MXene%20improves%20the%20OER%20performances%20of%20CuCo%20catalysts.%20The%20MXene%20over%20time%20reduces%20the%20leaching%20rate%20of%20the%20Cu%20by%20itself%20being%20preferentially%20leached%20which%20also%20allows%20for%20the%20higher%20OER%20activity%20to%20be%20maintained.%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%2C%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20The%20oxygen%20evolution%20reaction%20%28OER%29%20is%20a%20key%20reaction%20in%20the%20production%20of%20green%20hydrogen%20by%20water%20electrolysis.%20In%20alkaline%20media%2C%20the%20current%20state%20of%20the%20art%20catalysts%20used%20for%20the%20OER%20are%20based%20on%20non-noble%20metal%20oxides.%20However%2C%20despite%20their%20huge%20potential%20as%20OER%20catalysts%2C%20these%20materials%20exhibit%20various%20disadvantages%20including%20lack%20of%20stability%20and%20conductivity%20that%20hinder%20the%20wide-spread%20utilization%20of%20these%20materials%20in%20alkaline%20electrolyzer%20devices.%20This%20study%20highlights%20the%20innovative%20chemical%20functionalization%20of%20a%20mixed%20copper%20cobalt%20hydroxide%20with%20the%20V%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%202%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20CT%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20x%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20MXene%20to%20enhance%20the%20OER%20efficiency%2C%20addressing%20the%20need%20for%20effective%20electrocatalytic%20interfaces%20for%20sustainable%20hydrogen%20production.%20The%20herein%20synthesized%20CuCo%40V%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%202%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20CT%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20x%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20electrocatalysts%20demonstrate%20remarkable%20activity%2C%20outperforming%20the%20pure%20CuCo%20catalysts%20for%20the%20OER%20and%20moreover%20show%20increased%20efficiency%20after%2012%20hours%20of%20continuous%20operation.%20This%20strategic%20integration%20improved%20the%20water%20oxidation%20performance%20of%20the%20pure%20oxide%20material%20by%20improving%20the%20composite%27s%20hydrophilicity%2C%20charge%20transfer%20properties%20and%20ability%20to%20hinder%20Cu%20leaching.%20The%20materials%20were%20characterized%20using%20an%20array%20of%20materials%20characterization%20techniques%20to%20help%20decipher%20both%20structure%20of%20the%20composite%20materials%20after%20synthesis%20and%20to%20elucidate%20the%20reasoning%20for%20the%20OER%20enhancement%20for%20the%20composites.%20This%20work%20demonstrates%20the%20significant%20potential%20of%20TMO-based%20nanomaterials%20combined%20with%20V%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%202%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20CT%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20x%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20for%20advanced%20innovative%20electrocatalytic%20interfaces%20in%20energy%20conversion%20applications.%22%2C%22date%22%3A%222024-08-02%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1039%5C%2FD4TA02700K%22%2C%22ISSN%22%3A%222050-7488%2C%202050-7496%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fxlink.rsc.org%5C%2F%3FDOI%3DD4TA02700K%22%2C%22collections%22%3A%5B%22JKNPB296%22%5D%2C%22dateModified%22%3A%222024-09-03T12%3A18%3A48Z%22%7D%7D%2C%7B%22key%22%3A%226Y49A9YD%22%2C%22library%22%3A%7B%22id%22%3A11840969%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Zhang%20et%20al.%22%2C%22parsedDate%22%3A%222024-07-27%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EZhang%2C%20Z.%2C%20Wang%2C%20R.%2C%20Mazzio%2C%20K.%20A.%2C%20Koch%2C%20N.%2C%20%26amp%3B%20Adelhelm%2C%20P.%20%282024%29.%20Silver%20Thiophosphate%20%28Ag%3Csub%3E3%3C%5C%2Fsub%3EPS%3Csub%3E4%3C%5C%2Fsub%3E%29%20as%20a%20Multielectron%20Reaction%20Active%20Material%20for%20Lithium%20Solid%26%23×2010%3BState%20Batteries.%20%3Ci%3EEnergy%20Technology%3C%5C%2Fi%3E%2C%202401040.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1002%5C%2Fente.202401040%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1002%5C%2Fente.202401040%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Silver%20Thiophosphate%20%28Ag%3Csub%3E3%3C%5C%2Fsub%3EPS%3Csub%3E4%3C%5C%2Fsub%3E%29%20as%20a%20Multielectron%20Reaction%20Active%20Material%20for%20Lithium%20Solid%5Cu2010State%20Batteries%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Zhenggang%22%2C%22lastName%22%3A%22Zhang%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Rongbin%22%2C%22lastName%22%3A%22Wang%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Katherine%20A.%22%2C%22lastName%22%3A%22Mazzio%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Norbert%22%2C%22lastName%22%3A%22Koch%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Philipp%22%2C%22lastName%22%3A%22Adelhelm%22%7D%5D%2C%22abstractNote%22%3A%22Beyond%20its%20Li%5Cu2010ion%20conductivity%2C%20the%20solid%20electrolyte%20lithium%20thiophosphate%20%28%5Cu03b2%5Cu2010Li%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%203%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20PS%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%204%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%29%20exhibits%20redox%20activity%20when%20its%20electrochemical%20stability%20window%20is%20exceeded.%20As%20this%20redox%20activity%20can%20be%20%28partially%29%20reversible%2C%20thiophosphates%20may%20be%20used%20as%20cathode%20active%20materials%20%28CAM%29.%20Silver%20thiophosphate%20%28Ag%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%203%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20PS%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%204%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%29%20is%20a%20well%5Cu2010known%20Ag%5Cu2010ion%20conductor%2C%20which%20has%20the%20same%20crystal%20structure%20and%20similar%20chemical%20composition%20as%20%5Cu03b2%5Cu2010Li%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%203%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20PS%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%204%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20.%20Here%2C%20Ag%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%203%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20PS%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%204%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20is%20selected%20and%20studied%20as%20the%20CAM%20for%20Li%20solid%5Cu2010state%20batteries%20%28Li%5Cu2010SSBs%29%20with%20the%20configuration%20%28In%5C%2FInLi%7C%20%5Cu03b2%5Cu2010Li%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%203%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20PS%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%204%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%7C%20Ag%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%203%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20PS%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%204%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%3A%20%5Cu03b2%5Cu2010Li%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%203%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20PS%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%204%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%3A%20C65%5Cu2009%3D%5Cu200940%3A%2050%3A%2010%5Cu2009wt%25%29.%20The%20cells%20provide%20a%20discharge%20capacity%20of%20325%5Cu2009mAh%5Cu2009g%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu22121%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20at%2010%5Cu2009mA%5Cu2009g%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu22121%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%2C%20but%20suffer%20from%20continuous%20capacity%20fading%20during%20cycling%20with%20an%20average%20Coulomb%20efficiency%20of%2097%25%20at%2050%5Cu2009mA%5Cu2009g%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu22121%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20.%20The%20reaction%20mechanism%20is%20studied%20using%20X%5Cu2010ray%20diffraction%2C%20X%5Cu2010ray%20photoelectron%20spectroscopy%2C%20Raman%20spectroscopy%2C%20and%20impedance%20spectroscopy.%20Overall%2C%20the%20reaction%20of%20Li%20with%20Ag%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%203%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20PS%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%204%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20is%20found%20to%20be%20initially%20partially%20reversible%2C%20but%20over%20cycling%20Ag%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%202%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20S%20and%20S%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%208%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20become%20the%20active%20materials%20along%20with%20the%20formation%20of%20other%20byproducts%20such%20as%20Ag%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%202%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20P%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%202%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20S%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%206%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20and%20Li%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%202%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20P%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%202%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20S%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%206%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20.%22%2C%22date%22%3A%222024-07-27%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1002%5C%2Fente.202401040%22%2C%22ISSN%22%3A%222194-4288%2C%202194-4296%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fonlinelibrary.wiley.com%5C%2Fdoi%5C%2F10.1002%5C%2Fente.202401040%22%2C%22collections%22%3A%5B%22JKNPB296%22%5D%2C%22dateModified%22%3A%222024-08-06T12%3A27%3A40Z%22%7D%7D%2C%7B%22key%22%3A%22BREUH32U%22%2C%22library%22%3A%7B%22id%22%3A11840969%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Tjhe%20et%20al.%22%2C%22parsedDate%22%3A%222024-07-26%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3ETjhe%2C%20D.%20H.%20L.%2C%20Ren%2C%20X.%2C%20Jacobs%2C%20I.%20E.%2C%20D%26%23×2019%3BAvino%2C%20G.%2C%20Mustafa%2C%20T.%20B.%20E.%2C%20Marsh%2C%20T.%20G.%2C%20Zhang%2C%20L.%2C%20Fu%2C%20Y.%2C%20Mansour%2C%20A.%20E.%2C%20Opitz%2C%20A.%2C%20Huang%2C%20Y.%2C%20Zhu%2C%20W.%2C%20Unal%2C%20A.%20H.%2C%20Hoek%2C%20S.%2C%20Lemaur%2C%20V.%2C%20Quarti%2C%20C.%2C%20He%2C%20Q.%2C%20Lee%2C%20J.-K.%2C%20McCulloch%2C%20I.%2C%20%26%23×2026%3B%20Sirringhaus%2C%20H.%20%282024%29.%20Non-equilibrium%20transport%20in%20polymer%20mixed%20ionic%26%23×2013%3Belectronic%20conductors%20at%20ultrahigh%20charge%20densities.%20%3Ci%3ENature%20Materials%3C%5C%2Fi%3E.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1038%5C%2Fs41563-024-01953-6%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1038%5C%2Fs41563-024-01953-6%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Non-equilibrium%20transport%20in%20polymer%20mixed%20ionic%5Cu2013electronic%20conductors%20at%20ultrahigh%20charge%20densities%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Dionisius%20H.%20L.%22%2C%22lastName%22%3A%22Tjhe%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Xinglong%22%2C%22lastName%22%3A%22Ren%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Ian%20E.%22%2C%22lastName%22%3A%22Jacobs%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Gabriele%22%2C%22lastName%22%3A%22D%5Cu2019Avino%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Tarig%20B.%20E.%22%2C%22lastName%22%3A%22Mustafa%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Thomas%20G.%22%2C%22lastName%22%3A%22Marsh%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Lu%22%2C%22lastName%22%3A%22Zhang%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Yao%22%2C%22lastName%22%3A%22Fu%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Ahmed%20E.%22%2C%22lastName%22%3A%22Mansour%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Andreas%22%2C%22lastName%22%3A%22Opitz%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Yuxuan%22%2C%22lastName%22%3A%22Huang%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Wenjin%22%2C%22lastName%22%3A%22Zhu%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Ahmet%20Hamdi%22%2C%22lastName%22%3A%22Unal%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Sebastiaan%22%2C%22lastName%22%3A%22Hoek%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Vincent%22%2C%22lastName%22%3A%22Lemaur%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Claudio%22%2C%22lastName%22%3A%22Quarti%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Qiao%22%2C%22lastName%22%3A%22He%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jin-Kyun%22%2C%22lastName%22%3A%22Lee%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Iain%22%2C%22lastName%22%3A%22McCulloch%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Martin%22%2C%22lastName%22%3A%22Heeney%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Norbert%22%2C%22lastName%22%3A%22Koch%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Clare%20P.%22%2C%22lastName%22%3A%22Grey%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22David%22%2C%22lastName%22%3A%22Beljonne%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Simone%22%2C%22lastName%22%3A%22Fratini%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Henning%22%2C%22lastName%22%3A%22Sirringhaus%22%7D%5D%2C%22abstractNote%22%3A%22Abstract%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20Conducting%20polymers%20are%20mixed%20ionic%5Cu2013electronic%20conductors%20that%20are%20emerging%20candidates%20for%20neuromorphic%20computing%2C%20bioelectronics%20and%20thermoelectrics.%20However%2C%20fundamental%20aspects%20of%20their%20many-body%20correlated%20electron%5Cu2013ion%20transport%20physics%20remain%20poorly%20understood.%20Here%20we%20show%20that%20in%20p-type%20organic%20electrochemical%20transistors%20it%20is%20possible%20to%20remove%20all%20of%20the%20electrons%20from%20the%20valence%20band%20and%20even%20access%20deeper%20bands%20without%20degradation.%20By%20adding%20a%20second%2C%20field-effect%20gate%20electrode%2C%20additional%20electrons%20or%20holes%20can%20be%20injected%20at%20set%20doping%20states.%20Under%20conditions%20where%20the%20counterions%20are%20unable%20to%20equilibrate%20in%20response%20to%20field-induced%20changes%20in%20the%20electronic%20carrier%20density%2C%20we%20observe%20surprising%2C%20non-equilibrium%20transport%20signatures%20that%20provide%20unique%20insights%20into%20the%20interaction-driven%20formation%20of%20a%20frozen%2C%20soft%20Coulomb%20gap%20in%20the%20density%20of%20states.%20Our%20work%20identifies%20new%20strategies%20for%20substantially%20enhancing%20the%20transport%20properties%20of%20conducting%20polymers%20by%20exploiting%20non-equilibrium%20states%20in%20the%20coupled%20system%20of%20electronic%20charges%20and%20counterions.%22%2C%22date%22%3A%222024-07-26%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1038%5C%2Fs41563-024-01953-6%22%2C%22ISSN%22%3A%221476-1122%2C%201476-4660%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fwww.nature.com%5C%2Farticles%5C%2Fs41563-024-01953-6%22%2C%22collections%22%3A%5B%22JKNPB296%22%5D%2C%22dateModified%22%3A%222024-08-06T12%3A28%3A20Z%22%7D%7D%2C%7B%22key%22%3A%22C7UH4WWS%22%2C%22library%22%3A%7B%22id%22%3A11840969%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Jaiswal%20et%20al.%22%2C%22parsedDate%22%3A%222024-07-26%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EJaiswal%2C%20A.%20K.%2C%20Saha%2C%20P.%2C%20Jiang%2C%20J.%2C%20Suzuki%2C%20K.%2C%20Jasny%2C%20A.%2C%20Schmidt%2C%20B.%20M.%2C%20Maeda%2C%20S.%2C%20Hecht%2C%20S.%2C%20%26amp%3B%20Huang%2C%20C.-Y.%20D.%20%282024%29.%20Accessing%20a%20Diverse%20Set%20of%20Functional%20Red-Light%20Photoswitches%20by%20Selective%20Copper-Catalyzed%20Indigo%20%3Ci%3EN%3C%5C%2Fi%3E%20-Arylation.%20%3Ci%3EJournal%20of%20the%20American%20Chemical%20Society%3C%5C%2Fi%3E%2C%20jacs.4c03543.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1021%5C%2Fjacs.4c03543%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1021%5C%2Fjacs.4c03543%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Accessing%20a%20Diverse%20Set%20of%20Functional%20Red-Light%20Photoswitches%20by%20Selective%20Copper-Catalyzed%20Indigo%20%3Ci%3EN%3C%5C%2Fi%3E%20-Arylation%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Amit%20K.%22%2C%22lastName%22%3A%22Jaiswal%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Priya%22%2C%22lastName%22%3A%22Saha%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Julong%22%2C%22lastName%22%3A%22Jiang%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Kimichi%22%2C%22lastName%22%3A%22Suzuki%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Anna%22%2C%22lastName%22%3A%22Jasny%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Bernd%20M.%22%2C%22lastName%22%3A%22Schmidt%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Satoshi%22%2C%22lastName%22%3A%22Maeda%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Stefan%22%2C%22lastName%22%3A%22Hecht%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Chung-Yang%20Dennis%22%2C%22lastName%22%3A%22Huang%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%222024-07-26%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1021%5C%2Fjacs.4c03543%22%2C%22ISSN%22%3A%220002-7863%2C%201520-5126%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fpubs.acs.org%5C%2Fdoi%5C%2F10.1021%5C%2Fjacs.4c03543%22%2C%22collections%22%3A%5B%22JKNPB296%22%5D%2C%22dateModified%22%3A%222024-08-06T11%3A05%3A43Z%22%7D%7D%2C%7B%22key%22%3A%22YTA6EFU7%22%2C%22library%22%3A%7B%22id%22%3A11840969%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Merkel%20et%20al.%22%2C%22parsedDate%22%3A%222024-07-25%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EMerkel%2C%20L.%2C%20Setaro%2C%20A.%2C%20Halbig%2C%20C.%20E.%2C%20Shimizu%2C%20S.%2C%20Yoshii%2C%20T.%2C%20Nishihara%2C%20H.%2C%20Hilal%2C%20T.%2C%20Algara-Siller%2C%20G.%2C%20Koch%2C%20C.%2C%20%26amp%3B%20Eigler%2C%20S.%20%282024%29.%20Structural%20model%20of%20oxidatively%20unzipped%20narrow%20single-walled%20carbon%20nanotubes.%20%3Ci%3ECarbon%3C%5C%2Fi%3E%2C%20%3Ci%3E229%3C%5C%2Fi%3E%2C%20119454.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1016%5C%2Fj.carbon.2024.119454%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1016%5C%2Fj.carbon.2024.119454%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Structural%20model%20of%20oxidatively%20unzipped%20narrow%20single-walled%20carbon%20nanotubes%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Lucia%22%2C%22lastName%22%3A%22Merkel%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Antonio%22%2C%22lastName%22%3A%22Setaro%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Christian%20E.%22%2C%22lastName%22%3A%22Halbig%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Shunsuke%22%2C%22lastName%22%3A%22Shimizu%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Takeharu%22%2C%22lastName%22%3A%22Yoshii%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Hiromoto%22%2C%22lastName%22%3A%22Nishihara%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Tarek%22%2C%22lastName%22%3A%22Hilal%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Gerardo%22%2C%22lastName%22%3A%22Algara-Siller%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Christoph%22%2C%22lastName%22%3A%22Koch%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Siegfried%22%2C%22lastName%22%3A%22Eigler%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%222024-07-25%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1016%5C%2Fj.carbon.2024.119454%22%2C%22ISSN%22%3A%2200086223%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Flinkinghub.elsevier.com%5C%2Fretrieve%5C%2Fpii%5C%2FS0008622324006730%22%2C%22collections%22%3A%5B%22JKNPB296%22%5D%2C%22dateModified%22%3A%222024-08-06T11%3A08%3A46Z%22%7D%7D%2C%7B%22key%22%3A%22S54TKWVZ%22%2C%22library%22%3A%7B%22id%22%3A11840969%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Plaickner%20et%20al.%22%2C%22parsedDate%22%3A%222024-07-24%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EPlaickner%2C%20J.%2C%20Petit%2C%20T.%2C%20B%26%23xE4%3Brmann%2C%20P.%2C%20Schultz%2C%20T.%2C%20Koch%2C%20N.%2C%20%26amp%3B%20Esser%2C%20N.%20%282024%29.%20Surface%20termination%20effects%20on%20Raman%20spectra%20of%20Ti%3Csub%3E3%3C%5C%2Fsub%3EC%3Csub%3E2%3C%5C%2Fsub%3ET%3Csub%3E%3Ci%3Ex%3C%5C%2Fi%3E%5Cn%3C%5C%2Fsub%3E%20MXenes%3A%20an%20%3Ci%3Ein%20situ%3C%5C%2Fi%3E%20UHV%20analysis.%20%3Ci%3EPhysical%20Chemistry%20Chemical%20Physics%3C%5C%2Fi%3E%2C%2010.1039.D4CP02197E.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1039%5C%2FD4CP02197E%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1039%5C%2FD4CP02197E%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Surface%20termination%20effects%20on%20Raman%20spectra%20of%20Ti%3Csub%3E3%3C%5C%2Fsub%3EC%3Csub%3E2%3C%5C%2Fsub%3ET%3Csub%3E%3Ci%3Ex%3C%5C%2Fi%3E%5Cn%3C%5C%2Fsub%3E%20MXenes%3A%20an%20%3Ci%3Ein%20situ%3C%5C%2Fi%3E%20UHV%20analysis%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Julian%22%2C%22lastName%22%3A%22Plaickner%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Tristan%22%2C%22lastName%22%3A%22Petit%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Peer%22%2C%22lastName%22%3A%22B%5Cu00e4rmann%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Thorsten%22%2C%22lastName%22%3A%22Schultz%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Norbert%22%2C%22lastName%22%3A%22Koch%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Norbert%22%2C%22lastName%22%3A%22Esser%22%7D%5D%2C%22abstractNote%22%3A%22This%20work%20provides%20new%20insights%20into%20the%20interpretation%20of%20Raman%20spectra%20of%20Ti%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%203%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20C%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%202%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20T%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20x%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20MXenes%20by%20thermal%20desorption%20of%20surface%20terminations%20in%20vacuum.%20Despite%20broad%20spectral%20features%2C%20the%20contribution%20of%20the%20fluorine%20termination%20is%20clearly%20identified.%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%2C%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20Ti%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%203%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20C%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%202%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20T%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20x%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20MXenes%20have%20typically%20a%20mixed%20surface%20termination%20of%20oxygen%2C%20hydroxyl%20and%20fluorine%20groups%20%28T%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20x%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%29.%20In%20this%20work%2C%20we%20investigate%20the%20influence%20of%20the%20surface%20termination%20on%20the%20vibrational%20properties%20of%20Ti%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%203%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20C%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%202%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20T%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20x%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20by%20performing%20thermal%20desorption%20and%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20in%20situ%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20Raman%20spectroscopy%20in%20ultra-high-vacuum%20%28UHV%29.%20Significant%20changes%20in%20the%20Raman%20spectra%20occur%20after%20annealing%20above%20600%20%5Cu00b0C%2C%20correlated%20with%20the%20desorption%20of%20approximately%2080%25%20of%20the%20fluorine%20termination%2C%20as%20confirmed%20by%20mass%20spectrometry%20and%20X-ray%20photoemission%20spectra.%20In%20particular%2C%20the%20intense%20Raman%20mode%20at%20203%20cm%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu22121%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%2C%20usually%20attributed%20to%20a%20Ti%5Cu2013C-layer%20stretching%20vibration%2C%20is%20strongly%20damped%20upon%20fluorine%20desorption%2C%20while%20the%20broad%20spectral%20features%20between%20220%20and%20680%20cm%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu22121%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%2C%20usually%20attributed%20to%20surface%20group%20vibrations%2C%20are%20not%20changing%20significantly.%20We%20show%20that%20the%20Raman%20spectra%20and%20the%20change%20induced%20by%20fluorine%20desorption%20are%20well%20represented%20by%20the%20phonon%20density%20of%20states%20instead%20of%20zone-center%20phonon%20modes.%20Disorder-induced%20Raman%20scattering%20strongly%20contributes%20to%20the%20Raman%20spectra.%20Moreover%2C%20due%20to%20the%20metallic%20nature%20of%20MXenes%2C%20charge%20density%20fluctuation%20scattering%20contributes%20as%20well.%20We%20show%20that%20the%20two%20scattering%20mechanisms%2C%20deformation%20potential%20and%20charge%20density%20fluctuation%2C%20may%20lead%20to%20opposite%20interpretations%20concerning%20the%20symmetry%20of%20the%20fluorine-related%20mode%20at%20203%20cm%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu22121%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20.%20This%20study%20provides%20new%20insights%20into%20the%20interpretation%20of%20the%20Raman%20spectra%20of%20MXenes%2C%20especially%20regarding%20the%20relation%20between%20surface%20chemistry%20and%20vibrational%20spectroscopy.%22%2C%22date%22%3A%222024-07-24%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1039%5C%2FD4CP02197E%22%2C%22ISSN%22%3A%221463-9076%2C%201463-9084%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fxlink.rsc.org%5C%2F%3FDOI%3DD4CP02197E%22%2C%22collections%22%3A%5B%22JKNPB296%22%5D%2C%22dateModified%22%3A%222024-08-06T12%3A29%3A19Z%22%7D%7D%2C%7B%22key%22%3A%226E3HRQGJ%22%2C%22library%22%3A%7B%22id%22%3A11840969%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Yin%20et%20al.%22%2C%22parsedDate%22%3A%222024-07-17%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EYin%2C%20X.%2C%20Yang%2C%20L.%2C%20Zhao%2C%20W.%2C%20Li%2C%20Z.%2C%20Xu%2C%20J.%2C%20Du%2C%20Y.%2C%20Liu%2C%20Z.%2C%20Sun%2C%20Y.%2C%20Deng%2C%20Y.%2C%20Wang%2C%20J.%2C%20Adelhelm%2C%20P.%2C%20Yao%2C%20X.%2C%20Si%2C%20R.%2C%20%26amp%3B%20Zhou%2C%20D.%20%282024%29.%20Synergetic%20Modulation%20of%20Interlayer%26%23×2013%3BIntralayer%20Spacings%20for%20P2-Type%20Layered%20Oxide%20Cathode%20with%20Superior%20Rate%20Performance.%20%3Ci%3EACS%20Energy%20Letters%3C%5C%2Fi%3E%2C%203922%26%23×2013%3B3930.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1021%5C%2Facsenergylett.4c01520%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1021%5C%2Facsenergylett.4c01520%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Synergetic%20Modulation%20of%20Interlayer%5Cu2013Intralayer%20Spacings%20for%20P2-Type%20Layered%20Oxide%20Cathode%20with%20Superior%20Rate%20Performance%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Xingxing%22%2C%22lastName%22%3A%22Yin%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Liangtao%22%2C%22lastName%22%3A%22Yang%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Wenguang%22%2C%22lastName%22%3A%22Zhao%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Zenan%22%2C%22lastName%22%3A%22Li%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jin%22%2C%22lastName%22%3A%22Xu%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Yuanyuan%22%2C%22lastName%22%3A%22Du%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Zhongqing%22%2C%22lastName%22%3A%22Liu%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Yanan%22%2C%22lastName%22%3A%22Sun%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Yonghong%22%2C%22lastName%22%3A%22Deng%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jun%22%2C%22lastName%22%3A%22Wang%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Philipp%22%2C%22lastName%22%3A%22Adelhelm%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Xiangdong%22%2C%22lastName%22%3A%22Yao%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Rui%22%2C%22lastName%22%3A%22Si%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Dong%22%2C%22lastName%22%3A%22Zhou%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%222024-07-17%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1021%5C%2Facsenergylett.4c01520%22%2C%22ISSN%22%3A%222380-8195%2C%202380-8195%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fpubs.acs.org%5C%2Fdoi%5C%2F10.1021%5C%2Facsenergylett.4c01520%22%2C%22collections%22%3A%5B%22JKNPB296%22%5D%2C%22dateModified%22%3A%222024-08-02T11%3A09%3A02Z%22%7D%7D%2C%7B%22key%22%3A%224HLRXPQL%22%2C%22library%22%3A%7B%22id%22%3A11840969%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Wang%20et%20al.%22%2C%22parsedDate%22%3A%222024-07-16%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EWang%2C%20J.%2C%20Liccardo%2C%20L.%2C%20Habibimarkani%2C%20H.%2C%20Wierzbicka%2C%20E.%2C%20Schultz%2C%20T.%2C%20Koch%2C%20N.%2C%20Moretti%2C%20E.%2C%20%26amp%3B%20Pinna%2C%20N.%20%282024%29.%20Precise%20control%20of%20TiO%3Csub%3E2%3C%5C%2Fsub%3E%20overlayer%20on%20hematite%20nanorod%20arrays%20by%20ALD%20for%20the%20photoelectrochemical%20water%20splitting.%20%3Ci%3ESustainable%20Energy%20%26amp%3B%20Fuels%3C%5C%2Fi%3E%2C%2010.1039.D3SE01633A.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1039%5C%2FD3SE01633A%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1039%5C%2FD3SE01633A%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Precise%20control%20of%20TiO%3Csub%3E2%3C%5C%2Fsub%3E%20overlayer%20on%20hematite%20nanorod%20arrays%20by%20ALD%20for%20the%20photoelectrochemical%20water%20splitting%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jiao%22%2C%22lastName%22%3A%22Wang%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Letizia%22%2C%22lastName%22%3A%22Liccardo%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Heydar%22%2C%22lastName%22%3A%22Habibimarkani%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Ewa%22%2C%22lastName%22%3A%22Wierzbicka%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Thorsten%22%2C%22lastName%22%3A%22Schultz%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Norbert%22%2C%22lastName%22%3A%22Koch%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Elisa%22%2C%22lastName%22%3A%22Moretti%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Nicola%22%2C%22lastName%22%3A%22Pinna%22%7D%5D%2C%22abstractNote%22%3A%22The%20short%20lifetime%20of%20electron%5Cu2013hole%20pairs%20and%20high%20electron%5Cu2013hole%20recombination%20rate%20at%20surface%20states%20significantly%20limit%20the%20practical%20applications%20of%20hematite%20%28%5Cu03b1-Fe%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%202%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20O%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%203%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%29%20photoanodes%20in%20photoelectrochemical%20%28PEC%29%20water%20splitting.%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%2C%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20The%20short%20lifetime%20of%20electron%5Cu2013hole%20pairs%20and%20high%20electron%5Cu2013hole%20recombination%20rate%20at%20surface%20states%20significantly%20limit%20the%20practical%20applications%20of%20hematite%20%28%5Cu03b1-Fe%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%202%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20O%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%203%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%29%20photoanodes%20in%20photoelectrochemical%20%28PEC%29%20water%20splitting.%20Surface%20modification%20with%20a%20TiO%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%202%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20overlayer%20has%20been%20demonstrated%20to%20be%20an%20efficient%20way%20to%20improve%20the%20PEC%20performance.%20However%2C%20a%20fine%20control%20of%20the%20TiO%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%202%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20overlayer%20and%20a%20deep%20understanding%20of%20the%20impact%20of%20the%20TiO%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%202%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20overlayer%20with%20variable%20thickness%20on%20the%20PEC%20performance%2C%20to%20the%20best%20of%20our%20knowledge%2C%20has%20yet%20to%20be%20done.%20Here%2C%20a%20conformal%20ultrathin%20TiO%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%202%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20overlayer%20is%20successfully%20deposited%20on%20hydrothermal%20grown%20one-dimensional%20hematite%20nanorod%20arrays%20by%20atomic%20layer%20deposition.%20The%20morphology%20and%20thickness%20of%20the%20TiO%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%202%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20overlayer%20can%20be%20precisely%20controlled.%20The%20effect%20of%20the%20thickness%20of%20the%20TiO%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%202%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20overlayer%20on%20the%20overall%20water%20splitting%20efficiency%20of%20hematite%20photoanodes%20under%20visible%20and%20UV%20light%20has%20been%20systematically%20investigated.%20The%20charge%20excitation%20and%20transfer%20mechanism%20at%20the%20semiconductor%5Cu2013electrolyte%20interface%20has%20also%20been%20studied.%22%2C%22date%22%3A%222024-07-16%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1039%5C%2FD3SE01633A%22%2C%22ISSN%22%3A%222398-4902%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fxlink.rsc.org%5C%2F%3FDOI%3DD3SE01633A%22%2C%22collections%22%3A%5B%22JKNPB296%22%5D%2C%22dateModified%22%3A%222024-08-06T12%3A30%3A32Z%22%7D%7D%2C%7B%22key%22%3A%226D8985UZ%22%2C%22library%22%3A%7B%22id%22%3A11840969%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Zhao%20et%20al.%22%2C%22parsedDate%22%3A%222024-07-16%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EZhao%2C%20T.%2C%20Samanta%2C%20B.%2C%20De%20Irujo-Labalde%2C%20X.%20M.%2C%20Whang%2C%20G.%2C%20Yadav%2C%20N.%2C%20Kraft%2C%20M.%20A.%2C%20Adelhelm%2C%20P.%2C%20Hansen%2C%20M.%20R.%2C%20%26amp%3B%20Zeier%2C%20W.%20G.%20%282024%29.%20Sodium%20Metal%20Oxyhalides%20Na%3Ci%3EM%3C%5C%2Fi%3EOCl%3Csub%3E4%3C%5C%2Fsub%3E%20%28%3Ci%3EM%3C%5C%2Fi%3E%20%3D%20Nb%2C%20Ta%29%20with%20High%20Ionic%20Conductivities.%20%3Ci%3EACS%20Materials%20Letters%3C%5C%2Fi%3E%2C%203683%26%23×2013%3B3689.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1021%5C%2Facsmaterialslett.4c01145%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1021%5C%2Facsmaterialslett.4c01145%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Sodium%20Metal%20Oxyhalides%20Na%3Ci%3EM%3C%5C%2Fi%3EOCl%3Csub%3E4%3C%5C%2Fsub%3E%20%28%3Ci%3EM%3C%5C%2Fi%3E%20%3D%20Nb%2C%20Ta%29%20with%20High%20Ionic%20Conductivities%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Tong%22%2C%22lastName%22%3A%22Zhao%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Bibek%22%2C%22lastName%22%3A%22Samanta%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Xabier%20Martinez%22%2C%22lastName%22%3A%22De%20Irujo-Labalde%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Grace%22%2C%22lastName%22%3A%22Whang%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Neelam%22%2C%22lastName%22%3A%22Yadav%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Marvin%20A.%22%2C%22lastName%22%3A%22Kraft%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Philipp%22%2C%22lastName%22%3A%22Adelhelm%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Michael%20Ryan%22%2C%22lastName%22%3A%22Hansen%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Wolfgang%20G.%22%2C%22lastName%22%3A%22Zeier%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%222024-07-16%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1021%5C%2Facsmaterialslett.4c01145%22%2C%22ISSN%22%3A%222639-4979%2C%202639-4979%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fpubs.acs.org%5C%2Fdoi%5C%2F10.1021%5C%2Facsmaterialslett.4c01145%22%2C%22collections%22%3A%5B%22JKNPB296%22%5D%2C%22dateModified%22%3A%222024-08-02T11%3A10%3A47Z%22%7D%7D%2C%7B%22key%22%3A%22VGTN3FQB%22%2C%22library%22%3A%7B%22id%22%3A11840969%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Speckhard%20et%20al.%22%2C%22parsedDate%22%3A%222024-07-11%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3ESpeckhard%2C%20D.%2C%20Bechtel%2C%20T.%2C%20Ghiringhelli%2C%20L.%20M.%2C%20Kuban%2C%20M.%2C%20Rigamonti%2C%20S.%2C%20%26amp%3B%20Draxl%2C%20C.%20%282024%29.%20How%20big%20is%20big%20data%3F%20%3Ci%3EFaraday%20Discussions%3C%5C%2Fi%3E%2C%2010.1039.D4FD00102H.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1039%5C%2FD4FD00102H%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1039%5C%2FD4FD00102H%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22How%20big%20is%20big%20data%3F%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Daniel%22%2C%22lastName%22%3A%22Speckhard%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Tim%22%2C%22lastName%22%3A%22Bechtel%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Luca%20M.%22%2C%22lastName%22%3A%22Ghiringhelli%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Martin%22%2C%22lastName%22%3A%22Kuban%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Santiago%22%2C%22lastName%22%3A%22Rigamonti%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Claudia%22%2C%22lastName%22%3A%22Draxl%22%7D%5D%2C%22abstractNote%22%3A%22The%20advent%20of%20larger%20datasets%20in%20materials%20science%20poses%20unique%20challenges%20in%20modeling%2C%20infrastructure%2C%20and%20data%20diversity%20and%20quality.%20%5Cn%20%20%20%20%20%20%20%20%20%20%2C%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20Big%20data%20has%20ushered%20in%20a%20new%20wave%20of%20predictive%20power%20using%20machine-learning%20models.%20In%20this%20work%2C%20we%20assess%20what%20big%20means%20in%20the%20context%20of%20typical%20materials-science%20machine-learning%20problems.%20This%20concerns%20not%20only%20data%20volume%2C%20but%20also%20data%20quality%20and%20veracity%20as%20much%20as%20infrastructure%20issues.%20With%20selected%20examples%2C%20we%20ask%20%28i%29%20how%20models%20generalize%20to%20similar%20datasets%2C%20%28ii%29%20how%20high-quality%20datasets%20can%20be%20gathered%20from%20heterogenous%20sources%2C%20%28iii%29%20how%20the%20feature%20set%20and%20complexity%20of%20a%20model%20can%20affect%20expressivity%2C%20and%20%28iv%29%20what%20infrastructure%20requirements%20are%20needed%20to%20create%20larger%20datasets%20and%20train%20models%20on%20them.%20In%20sum%2C%20we%20find%20that%20big%20data%20present%20unique%20challenges%20along%20very%20different%20aspects%20that%20should%20serve%20to%20motivate%20further%20work.%22%2C%22date%22%3A%222024-07-11%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1039%5C%2FD4FD00102H%22%2C%22ISSN%22%3A%221359-6640%2C%201364-5498%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fxlink.rsc.org%5C%2F%3FDOI%3DD4FD00102H%22%2C%22collections%22%3A%5B%22JKNPB296%22%5D%2C%22dateModified%22%3A%222024-12-10T07%3A55%3A40Z%22%7D%7D%2C%7B%22key%22%3A%225ZRBH3G2%22%2C%22library%22%3A%7B%22id%22%3A11840969%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Xu%20et%20al.%22%2C%22parsedDate%22%3A%222024-07-11%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EXu%2C%20M.%2C%20Li%2C%20W.%2C%20Zhong%2C%20M.%2C%20Yang%2C%20J.%2C%20Gao%2C%20M.%2C%20Pinna%2C%20N.%2C%20%26amp%3B%20Lu%2C%20X.%20%282024%29.%20Trimetallic%20FeNiMo%20Nanofibers%20as%20High-Efficiency%20Electrocatalyst%20for%20Robust%20Oxygen%20Evolution.%20%3Ci%3EACS%20Materials%20Letters%3C%5C%2Fi%3E%2C%20%3Ci%3E6%3C%5C%2Fi%3E%288%29%2C%203548%26%23×2013%3B3556.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1021%5C%2Facsmaterialslett.4c00930%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1021%5C%2Facsmaterialslett.4c00930%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Trimetallic%20FeNiMo%20Nanofibers%20as%20High-Efficiency%20Electrocatalyst%20for%20Robust%20Oxygen%20Evolution%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Meijiao%22%2C%22lastName%22%3A%22Xu%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Weimo%22%2C%22lastName%22%3A%22Li%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Mengxiao%22%2C%22lastName%22%3A%22Zhong%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Junyu%22%2C%22lastName%22%3A%22Yang%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Mingbin%22%2C%22lastName%22%3A%22Gao%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Nicola%22%2C%22lastName%22%3A%22Pinna%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Xiaofeng%22%2C%22lastName%22%3A%22Lu%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%222024-07-11%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1021%5C%2Facsmaterialslett.4c00930%22%2C%22ISSN%22%3A%222639-4979%2C%202639-4979%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fpubs.acs.org%5C%2Fdoi%5C%2F10.1021%5C%2Facsmaterialslett.4c00930%22%2C%22collections%22%3A%5B%22JKNPB296%22%5D%2C%22dateModified%22%3A%222024-08-06T12%3A47%3A52Z%22%7D%7D%2C%7B%22key%22%3A%22YFRFHLHT%22%2C%22library%22%3A%7B%22id%22%3A11840969%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Nerl%20et%20al.%22%2C%22parsedDate%22%3A%222024-07-05%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3ENerl%2C%20H.%20C.%2C%20Ahart%2C%20C.%20S.%2C%20Eljarrat%2C%20A.%2C%20Koch%2C%20C.%20T.%2C%20Cucinotta%2C%20C.%20S.%2C%20%26amp%3B%20Plodinec%2C%20M.%20%282024%29.%20Transitional%20surface%20Pt%20carbide%20formation%20during%20carbon%20nanotube%20growth.%20%3Ci%3ECarbon%3C%5C%2Fi%3E%2C%20%3Ci%3E228%3C%5C%2Fi%3E%2C%20119399.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1016%5C%2Fj.carbon.2024.119399%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1016%5C%2Fj.carbon.2024.119399%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Transitional%20surface%20Pt%20carbide%20formation%20during%20carbon%20nanotube%20growth%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Hannah%20C.%22%2C%22lastName%22%3A%22Nerl%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Christian%20S.%22%2C%22lastName%22%3A%22Ahart%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Alberto%22%2C%22lastName%22%3A%22Eljarrat%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Christoph%20T.%22%2C%22lastName%22%3A%22Koch%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Clotilde%20S.%22%2C%22lastName%22%3A%22Cucinotta%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Milivoj%22%2C%22lastName%22%3A%22Plodinec%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%222024-07-05%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1016%5C%2Fj.carbon.2024.119399%22%2C%22ISSN%22%3A%2200086223%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Flinkinghub.elsevier.com%5C%2Fretrieve%5C%2Fpii%5C%2FS0008622324006183%22%2C%22collections%22%3A%5B%22JKNPB296%22%5D%2C%22dateModified%22%3A%222024-08-06T11%3A10%3A16Z%22%7D%7D%2C%7B%22key%22%3A%22ZC9UPWQT%22%2C%22library%22%3A%7B%22id%22%3A11840969%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Bauer%20et%20al.%22%2C%22parsedDate%22%3A%222024-07-03%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EBauer%2C%20S.%2C%20Benner%2C%20P.%2C%20Bereau%2C%20T.%2C%20Blum%2C%20V.%2C%20Boley%2C%20M.%2C%20Carbogno%2C%20C.%2C%20Catlow%2C%20C.%20R.%20A.%2C%20Dehm%2C%20G.%2C%20Eibl%2C%20S.%2C%20Ernstorfer%2C%20R.%2C%20Fekete%2C%20%26%23xC1%3B.%2C%20Foppa%2C%20L.%2C%20Fratzl%2C%20P.%2C%20Freysoldt%2C%20C.%2C%20Gault%2C%20B.%2C%20Ghiringhelli%2C%20L.%20M.%2C%20Giri%2C%20S.%20K.%2C%20Gladyshev%2C%20A.%2C%20Goyal%2C%20P.%2C%20%26%23×2026%3B%20Scheffler%2C%20M.%20%282024%29.%20Roadmap%20on%20data-centric%20materials%20science.%20%3Ci%3EModelling%20and%20Simulation%20in%20Materials%20Science%20and%20Engineering%3C%5C%2Fi%3E%2C%20%3Ci%3E32%3C%5C%2Fi%3E%286%29%2C%20063301.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1088%5C%2F1361-651X%5C%2Fad4d0d%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1088%5C%2F1361-651X%5C%2Fad4d0d%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Roadmap%20on%20data-centric%20materials%20science%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Stefan%22%2C%22lastName%22%3A%22Bauer%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Peter%22%2C%22lastName%22%3A%22Benner%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Tristan%22%2C%22lastName%22%3A%22Bereau%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Volker%22%2C%22lastName%22%3A%22Blum%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Mario%22%2C%22lastName%22%3A%22Boley%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Christian%22%2C%22lastName%22%3A%22Carbogno%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22C%20Richard%20A%22%2C%22lastName%22%3A%22Catlow%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Gerhard%22%2C%22lastName%22%3A%22Dehm%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Sebastian%22%2C%22lastName%22%3A%22Eibl%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Ralph%22%2C%22lastName%22%3A%22Ernstorfer%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22%5Cu00c1d%5Cu00e1m%22%2C%22lastName%22%3A%22Fekete%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Lucas%22%2C%22lastName%22%3A%22Foppa%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Peter%22%2C%22lastName%22%3A%22Fratzl%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Christoph%22%2C%22lastName%22%3A%22Freysoldt%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Baptiste%22%2C%22lastName%22%3A%22Gault%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Luca%20M%22%2C%22lastName%22%3A%22Ghiringhelli%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Sajal%20K%22%2C%22lastName%22%3A%22Giri%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Anton%22%2C%22lastName%22%3A%22Gladyshev%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Pawan%22%2C%22lastName%22%3A%22Goyal%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jason%22%2C%22lastName%22%3A%22Hattrick-Simpers%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Lara%22%2C%22lastName%22%3A%22Kabalan%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Petr%22%2C%22lastName%22%3A%22Karpov%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Mohammad%20S%22%2C%22lastName%22%3A%22Khorrami%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Christoph%20T.%22%2C%22lastName%22%3A%22Koch%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Sebastian%22%2C%22lastName%22%3A%22Kokott%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Thomas%22%2C%22lastName%22%3A%22Kosch%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Igor%22%2C%22lastName%22%3A%22Kowalec%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Kurt%22%2C%22lastName%22%3A%22Kremer%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Andreas%22%2C%22lastName%22%3A%22Leitherer%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Yue%22%2C%22lastName%22%3A%22Li%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Christian%20H%22%2C%22lastName%22%3A%22Liebscher%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Andrew%20J%22%2C%22lastName%22%3A%22Logsdail%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Zhongwei%22%2C%22lastName%22%3A%22Lu%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Felix%22%2C%22lastName%22%3A%22Luong%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Andreas%22%2C%22lastName%22%3A%22Marek%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Florian%22%2C%22lastName%22%3A%22Merz%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jaber%20R%22%2C%22lastName%22%3A%22Mianroodi%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22J%5Cu00f6rg%22%2C%22lastName%22%3A%22Neugebauer%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Zongrui%22%2C%22lastName%22%3A%22Pei%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Thomas%20A%20R%22%2C%22lastName%22%3A%22Purcell%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Dierk%22%2C%22lastName%22%3A%22Raabe%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Markus%22%2C%22lastName%22%3A%22Rampp%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Mariana%22%2C%22lastName%22%3A%22Rossi%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jan-Michael%22%2C%22lastName%22%3A%22Rost%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22James%22%2C%22lastName%22%3A%22Saal%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Ulf%22%2C%22lastName%22%3A%22Saalmann%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Kasturi%20Narasimha%22%2C%22lastName%22%3A%22Sasidhar%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Alaukik%22%2C%22lastName%22%3A%22Saxena%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Luigi%22%2C%22lastName%22%3A%22Sbail%5Cu00f2%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Markus%22%2C%22lastName%22%3A%22Scheidgen%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Marcel%22%2C%22lastName%22%3A%22Schloz%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Daniel%20F%22%2C%22lastName%22%3A%22Schmidt%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Simon%22%2C%22lastName%22%3A%22Teshuva%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Annette%22%2C%22lastName%22%3A%22Trunschke%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Ye%22%2C%22lastName%22%3A%22Wei%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Gerhard%22%2C%22lastName%22%3A%22Weikum%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22R%20Patrick%22%2C%22lastName%22%3A%22Xian%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Yi%22%2C%22lastName%22%3A%22Yao%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Junqi%22%2C%22lastName%22%3A%22Yin%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Meng%22%2C%22lastName%22%3A%22Zhao%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Matthias%22%2C%22lastName%22%3A%22Scheffler%22%7D%5D%2C%22abstractNote%22%3A%22Abstract%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20Science%20is%20and%20always%20has%20been%20based%20on%20data%2C%20but%20the%20terms%20%5Cu2018data-centric%5Cu2019%20and%20the%20%5Cu20184th%20paradigm%5Cu2019%20of%20materials%20research%20indicate%20a%20radical%20change%20in%20how%20information%20is%20retrieved%2C%20handled%20and%20research%20is%20performed.%20It%20signifies%20a%20transformative%20shift%20towards%20managing%20vast%20data%20collections%2C%20digital%20repositories%2C%20and%20innovative%20data%20analytics%20methods.%20The%20integration%20of%20artificial%20intelligence%20and%20its%20subset%20machine%20learning%2C%20has%20become%20pivotal%20in%20addressing%20all%20these%20challenges.%20This%20Roadmap%20on%20Data-Centric%20Materials%20Science%20explores%20fundamental%20concepts%20and%20methodologies%2C%20illustrating%20diverse%20applications%20in%20electronic-structure%20theory%2C%20soft%20matter%20theory%2C%20microstructure%20research%2C%20and%20experimental%20techniques%20like%20photoemission%2C%20atom%20probe%20tomography%2C%20and%20electron%20microscopy.%20While%20the%20roadmap%20delves%20into%20specific%20areas%20within%20the%20broad%20interdisciplinary%20field%20of%20materials%20science%2C%20the%20provided%20examples%20elucidate%20key%20concepts%20applicable%20to%20a%20wider%20range%20of%20topics.%20The%20discussed%20instances%20offer%20insights%20into%20addressing%20the%20multifaceted%20challenges%20encountered%20in%20contemporary%20materials%20research.%22%2C%22date%22%3A%222024-07-03%22%2C%22language%22%3A%22%22%2C%22DOI%22%3A%2210.1088%5C%2F1361-651X%5C%2Fad4d0d%22%2C%22ISSN%22%3A%220965-0393%2C%201361-651X%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fiopscience.iop.org%5C%2Farticle%5C%2F10.1088%5C%2F1361-651X%5C%2Fad4d0d%22%2C%22collections%22%3A%5B%22JKNPB296%22%5D%2C%22dateModified%22%3A%222024-08-06T11%3A09%3A37Z%22%7D%7D%2C%7B%22key%22%3A%2255VDHVS5%22%2C%22library%22%3A%7B%22id%22%3A11840969%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Simon%20et%20al.%22%2C%22parsedDate%22%3A%222024-07-03%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3ESimon%2C%20J.%20R.%2C%20Maksimov%2C%20D.%2C%20Lotze%2C%20C.%2C%20Wiechers%2C%20P.%2C%20Felipe%2C%20J.%20P.%20G.%2C%20Kobin%2C%20B.%2C%20Schwarz%2C%20J.%2C%20Hecht%2C%20S.%2C%20Franke%2C%20K.%20J.%2C%20%26amp%3B%20Rossi%2C%20M.%20%282024%29.%20Atomic-scale%20perspective%20on%20individual%20thiol-terminated%20molecules%20anchored%20to%20single%20S%20vacancies%20in%20MoS%202.%20%3Ci%3EPhysical%20Review%20B%3C%5C%2Fi%3E%2C%20%3Ci%3E110%3C%5C%2Fi%3E%284%29%2C%20045407.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1103%5C%2FPhysRevB.110.045407%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1103%5C%2FPhysRevB.110.045407%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Atomic-scale%20perspective%20on%20individual%20thiol-terminated%20molecules%20anchored%20to%20single%20S%20vacancies%20in%20MoS%202%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22J.%20Rika%22%2C%22lastName%22%3A%22Simon%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Dmitrii%22%2C%22lastName%22%3A%22Maksimov%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Christian%22%2C%22lastName%22%3A%22Lotze%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Paul%22%2C%22lastName%22%3A%22Wiechers%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Juan%20Pablo%20Guerrero%22%2C%22lastName%22%3A%22Felipe%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Bj%5Cu00f6rn%22%2C%22lastName%22%3A%22Kobin%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jutta%22%2C%22lastName%22%3A%22Schwarz%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Stefan%22%2C%22lastName%22%3A%22Hecht%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Katharina%20J.%22%2C%22lastName%22%3A%22Franke%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Mariana%22%2C%22lastName%22%3A%22Rossi%22%7D%5D%2C%22abstractNote%22%3A%22Sulfur%20vacancies%20in%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20MoS%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%202%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20on%20Au%28111%29%20have%20been%20shown%20to%20be%20negatively%20charged%20as%20reflected%20by%20a%20Kondo%20resonance.%20Here%2C%20we%20use%20scanning%20tunneling%20microscopy%20to%20show%20that%20these%20vacancies%20serve%20as%20anchoring%20sites%20for%20thiol-based%20molecules%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%28%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20CF%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%203%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu2212%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%203%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20P%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu2212%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20SH%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%29%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20with%20two%20distinct%20reaction%20products%2C%20one%20of%20them%20showing%20a%20Kondo%20resonance.%20Based%20on%20comparisons%20with%20density-functional%20theory%20%28DFT%29%20calculations%2C%20including%20a%20random%20structure%20search%20and%20computation%20of%20energies%20and%20electronic%20properties%20at%20a%20hybrid%20exchange-correlation%20functional%20level%2C%20we%20conclude%20that%20both%20anchored%20molecules%20are%20charge%20neutral.%20We%20propose%20that%20one%20of%20them%20is%20an%20anchored%20intact%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20CF%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%203%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu2212%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%203%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20P%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu2212%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20SH%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20molecule%20while%20the%20other%20one%20is%20the%20result%20of%20catalytically%20activated%20dehydrogenation%20to%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20CF%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%203%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu2212%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%203%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20P%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu2212%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20S%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20with%20subsequent%20anchoring.%20Our%20investigations%20highlight%20a%20perspective%20of%20functionalizing%20defects%20with%20thiol-terminated%20molecules%20that%20can%20be%20equipped%20with%20additional%20functional%20groups%2C%20such%20as%20charge%20donor%20or%20acceptor%20moieties%2C%20switching%20units%2C%20or%20magnetic%20centers.%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20Published%20by%20the%20American%20Physical%20Society%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%202024%22%2C%22date%22%3A%222024-07-03%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1103%5C%2FPhysRevB.110.045407%22%2C%22ISSN%22%3A%222469-9950%2C%202469-9969%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Flink.aps.org%5C%2Fdoi%5C%2F10.1103%5C%2FPhysRevB.110.045407%22%2C%22collections%22%3A%5B%22JKNPB296%22%5D%2C%22dateModified%22%3A%222024-08-06T11%3A04%3A07Z%22%7D%7D%2C%7B%22key%22%3A%22CZCMMCUV%22%2C%22library%22%3A%7B%22id%22%3A11840969%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Xu%20et%20al.%22%2C%22parsedDate%22%3A%222024-07-01%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EXu%2C%20J.%2C%20Han%2C%20P.%2C%20Jin%2C%20Y.%2C%20Lu%2C%20H.%2C%20Sun%2C%20B.%2C%20Gao%2C%20B.%2C%20He%2C%20T.%2C%20Xu%2C%20X.%2C%20Pinna%2C%20N.%2C%20%26amp%3B%20Wang%2C%20G.%20%282024%29.%20Hybrid%20Molecular%20Sieve-Based%20Interfacial%20Layer%20with%20Physical%20Confinement%20and%20Desolvation%20Effect%20for%20Dendrite-free%20Zinc%20Metal%20Anodes.%20%3Ci%3EACS%20Nano%3C%5C%2Fi%3E%2C%20%3Ci%3E18%3C%5C%2Fi%3E%2828%29%2C%2018592%26%23×2013%3B18603.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1021%5C%2Facsnano.4c04632%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1021%5C%2Facsnano.4c04632%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Hybrid%20Molecular%20Sieve-Based%20Interfacial%20Layer%20with%20Physical%20Confinement%20and%20Desolvation%20Effect%20for%20Dendrite-free%20Zinc%20Metal%20Anodes%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jing%22%2C%22lastName%22%3A%22Xu%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Pingan%22%2C%22lastName%22%3A%22Han%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Yang%22%2C%22lastName%22%3A%22Jin%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Hongfei%22%2C%22lastName%22%3A%22Lu%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Bing%22%2C%22lastName%22%3A%22Sun%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Beibei%22%2C%22lastName%22%3A%22Gao%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Tingting%22%2C%22lastName%22%3A%22He%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Xiaoxue%22%2C%22lastName%22%3A%22Xu%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Nicola%22%2C%22lastName%22%3A%22Pinna%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Guoxiu%22%2C%22lastName%22%3A%22Wang%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%222024-07-01%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1021%5C%2Facsnano.4c04632%22%2C%22ISSN%22%3A%221936-0851%2C%201936-086X%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fpubs.acs.org%5C%2Fdoi%5C%2F10.1021%5C%2Facsnano.4c04632%22%2C%22collections%22%3A%5B%22JKNPB296%22%5D%2C%22dateModified%22%3A%222024-08-06T12%3A39%3A32Z%22%7D%7D%2C%7B%22key%22%3A%22YNFJ7CEB%22%2C%22library%22%3A%7B%22id%22%3A11840969%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Pela%20and%20Draxl%22%2C%22parsedDate%22%3A%222024-07-01%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EPela%2C%20R.%20R.%2C%20%26amp%3B%20Draxl%2C%20C.%20%282024%29.%20Speeding%20up%20all-electron%20real-time%20TDDFT%20demonstrated%20by%20the%20exciting%20package.%20%3Ci%3EComputer%20Physics%20Communications%3C%5C%2Fi%3E%2C%20%3Ci%3E304%3C%5C%2Fi%3E%2C%20109292.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1016%5C%2Fj.cpc.2024.109292%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1016%5C%2Fj.cpc.2024.109292%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Speeding%20up%20all-electron%20real-time%20TDDFT%20demonstrated%20by%20the%20exciting%20package%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Ronaldo%20Rodrigues%22%2C%22lastName%22%3A%22Pela%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Claudia%22%2C%22lastName%22%3A%22Draxl%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%222024-07-01%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1016%5C%2Fj.cpc.2024.109292%22%2C%22ISSN%22%3A%2200104655%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Flinkinghub.elsevier.com%5C%2Fretrieve%5C%2Fpii%5C%2FS0010465524002157%22%2C%22collections%22%3A%5B%22JKNPB296%22%5D%2C%22dateModified%22%3A%222024-08-06T10%3A55%3A28Z%22%7D%7D%2C%7B%22key%22%3A%22ZXR5FAQR%22%2C%22library%22%3A%7B%22id%22%3A11840969%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Zhang%20et%20al.%22%2C%22parsedDate%22%3A%222024-06-30%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EZhang%2C%20Z.%2C%20Dong%2C%20D.%2C%20B%26%23xF6%3Bsking%2C%20T.%2C%20Dang%2C%20T.%2C%20Liu%2C%20C.%2C%20Sun%2C%20W.%2C%20Xie%2C%20M.%2C%20Hecht%2C%20S.%2C%20%26amp%3B%20Li%2C%20T.%20%282024%29.%20Solar%20Azo%26%23×2010%3BSwitches%20for%20Effective%20%3Ci%3EE%3C%5C%2Fi%3E%20%26%23×2192%3B%20%3Ci%3EZ%3C%5C%2Fi%3E%20Photoisomerization%20by%20Sunlight.%20%3Ci%3EAngewandte%20Chemie%20International%20Edition%3C%5C%2Fi%3E%2C%20%3Ci%3E63%3C%5C%2Fi%3E%2831%29%2C%20e202404528.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1002%5C%2Fanie.202404528%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1002%5C%2Fanie.202404528%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Solar%20Azo%5Cu2010Switches%20for%20Effective%20%3Ci%3EE%3C%5C%2Fi%3E%20%5Cu2192%20%3Ci%3EZ%3C%5C%2Fi%3E%20Photoisomerization%20by%20Sunlight%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Zhao%5Cu2010Yang%22%2C%22lastName%22%3A%22Zhang%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Dongfang%22%2C%22lastName%22%3A%22Dong%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Tom%22%2C%22lastName%22%3A%22B%5Cu00f6sking%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Tongtong%22%2C%22lastName%22%3A%22Dang%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Chunhao%22%2C%22lastName%22%3A%22Liu%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Wenjin%22%2C%22lastName%22%3A%22Sun%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Mingchen%22%2C%22lastName%22%3A%22Xie%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Stefan%22%2C%22lastName%22%3A%22Hecht%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Tao%22%2C%22lastName%22%3A%22Li%22%7D%5D%2C%22abstractNote%22%3A%22Abstract%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20Natural%20photoactive%20systems%20have%20evolved%20to%20harness%20broad%5Cu2010spectrum%20light%20from%20solar%20radiation%20for%20critical%20functions%20such%20as%20light%20perception%20and%20photosynthetic%20energy%20conversion.%20Molecular%20photoswitches%2C%20which%20undergo%20structural%20changes%20upon%20light%20absorption%2C%20are%20artificial%20photoactive%20tools%20widely%20used%20for%20developing%20photoresponsive%20systems%20and%20converting%20light%20energy.%20However%2C%20photoswitches%20generally%20need%20to%20be%20activated%20by%20light%20of%20specific%20narrow%20wavelength%20ranges%20for%20effective%20photoconversion%2C%20which%20limits%20their%20ability%20to%20directly%20work%20under%20sunlight%20and%20to%20efficiently%20harvest%20solar%20energy.%20Here%2C%20focusing%20on%20azo%5Cu2010switches%5Cu2014the%20most%20extensively%20studied%20photoswitches%2C%20we%20demonstrate%20effective%20solar%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20E%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu2192%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20Z%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20photoisomerization%20with%20photoconversions%20exceeding%2080%5Cu2009%25%20under%20unfiltered%20sunlight.%20These%20sunlight%5Cu2010driven%20azo%5Cu2010switches%20are%20developed%20by%20rendering%20the%20absorption%20of%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20E%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20isomers%20overwhelmingly%20stronger%20than%20that%20of%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20Z%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20isomers%20across%20a%20broad%20ultraviolet%20to%20visible%20spectrum.%20This%20unusual%20type%20of%20spectral%20profile%20is%20realized%20by%20a%20simple%20yet%20highly%20adjustable%20molecular%20design%20strategy%2C%20enabling%20the%20fine%5Cu2010tuning%20of%20spectral%20window%20that%20extends%20light%20absorption%20beyond%20600%5Cu2005nm.%20Notably%2C%20back%5Cu2010photoconversion%20can%20be%20achieved%20without%20impairing%20the%20forward%20solar%20isomerization%2C%20resulting%20in%20unique%20light%5Cu2010reversible%20solar%20switches.%20Such%20exceptional%20solar%20chemistry%20of%20photoswitches%20provides%20unprecedented%20opportunities%20for%20developing%20sustainable%20light%5Cu2010driven%20systems%20and%20efficient%20solar%20energy%20technologies.%22%2C%22date%22%3A%222024-06-30%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1002%5C%2Fanie.202404528%22%2C%22ISSN%22%3A%221433-7851%2C%201521-3773%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fonlinelibrary.wiley.com%5C%2Fdoi%5C%2F10.1002%5C%2Fanie.202404528%22%2C%22collections%22%3A%5B%22JKNPB296%22%5D%2C%22dateModified%22%3A%222024-08-06T11%3A03%3A20Z%22%7D%7D%2C%7B%22key%22%3A%229B33EJ4Z%22%2C%22library%22%3A%7B%22id%22%3A11840969%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Zhang%20et%20al.%22%2C%22parsedDate%22%3A%222024-06-27%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EZhang%2C%20W.%2C%20Liu%2C%20Y.%2C%20Jeppesen%2C%20H.%20S.%2C%20%26amp%3B%20Pinna%2C%20N.%20%282024%29.%20St%26%23xF6%3Bber%20method%20to%20amorphous%20metal-organic%20frameworks%20and%20coordination%20polymers.%20%3Ci%3ENature%20Communications%3C%5C%2Fi%3E%2C%20%3Ci%3E15%3C%5C%2Fi%3E%281%29%2C%205463.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1038%5C%2Fs41467-024-49772-2%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1038%5C%2Fs41467-024-49772-2%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22St%5Cu00f6ber%20method%20to%20amorphous%20metal-organic%20frameworks%20and%20coordination%20polymers%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Wei%22%2C%22lastName%22%3A%22Zhang%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Yanchen%22%2C%22lastName%22%3A%22Liu%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Henrik%20S.%22%2C%22lastName%22%3A%22Jeppesen%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Nicola%22%2C%22lastName%22%3A%22Pinna%22%7D%5D%2C%22abstractNote%22%3A%22Abstract%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20The%20St%5Cu00f6ber%20method%20is%20a%20widely-used%20sol-gel%20route%20for%20synthesizing%20amorphous%20SiO%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%202%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20colloids%20and%20conformal%20coatings.%20However%2C%20the%20material%20systems%20compatible%20with%20this%20method%20are%20still%20limited.%20Herein%2C%20we%20have%20extended%20the%20approach%20to%20metal-organic%20frameworks%20%28MOFs%29%20and%20coordination%20polymers%20%28CPs%29%20by%20mimicking%20the%20St%5Cu00f6ber%20method.%20We%20introduce%20a%20general%20synthesis%20route%20to%20amorphous%20MOFs%20or%20CPs%20by%20making%20use%20of%20a%20base-vapor%20diffusion%20method%2C%20which%20allows%20to%20precisely%20control%20the%20growth%20kinetics.%20Twenty-four%20different%20amorphous%20CPs%20colloids%20were%20successfully%20synthesized%20by%20selecting%2012%20metal%20ions%20and%2017%20organic%20ligands.%20Moreover%2C%20by%20introducing%20functional%20nanoparticles%20%28NPs%29%2C%20a%20conformal%20amorphous%20MOFs%20coating%20with%20controllable%20thickness%20can%20be%20grown%20on%20NPs%20to%20form%20core-shell%20colloids.%20The%20versatility%20of%20this%20amorphous%20coating%20technology%20was%20demonstrated%20by%20synthesizing%20over%20100%20core-shell%20composites%20from%2020%20amorphous%20CPs%20shells%20and%20over%2030%20different%20NPs.%20Besides%2C%20various%20multifunctional%20nanostructures%2C%20such%20as%20conformal%20yolk-amorphous%20MOF%20shell%2C%20core%40metal%20oxides%2C%20and%20core%40carbon%2C%20can%20be%20obtained%20through%20one-step%20transformation%20of%20the%20core%40amorphous%20MOFs.%20This%20work%20significantly%20enriches%20the%20St%5Cu00f6ber%20method%20and%20introduces%20a%20platform%2C%20enabling%20the%20systematic%20design%20of%20colloids%20exhibiting%20different%20level%20of%20functionality%20and%20complexity.%22%2C%22date%22%3A%222024-06-27%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1038%5C%2Fs41467-024-49772-2%22%2C%22ISSN%22%3A%222041-1723%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fwww.nature.com%5C%2Farticles%5C%2Fs41467-024-49772-2%22%2C%22collections%22%3A%5B%22JKNPB296%22%5D%2C%22dateModified%22%3A%222024-08-06T12%3A38%3A48Z%22%7D%7D%2C%7B%22key%22%3A%22NGUKU8DE%22%2C%22library%22%3A%7B%22id%22%3A11840969%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Affon%5Cu00e7o%20et%20al.%22%2C%22parsedDate%22%3A%222024-06-18%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EAffon%26%23xE7%3Bo%2C%20L.%20J.%2C%20Fernandes%2C%20S.%20L.%2C%20Assun%26%23xE7%3B%26%23xE3%3Bo%2C%20J.%20P.%20F.%2C%20Dagar%2C%20J.%2C%20Graeff%2C%20C.%20F.%20D.%20O.%2C%20Da%20Silva%2C%20J.%20H.%20D.%2C%20%26amp%3B%20Unger%2C%20E.%20%282024%29.%20Slot-die%20coating%20of%20niobium%20pentoxide%20applied%20as%20electron%20transport%20layer%20for%20perovskite%20solar%20cells.%20%3Ci%3ESolar%20Energy%3C%5C%2Fi%3E%2C%20%3Ci%3E276%3C%5C%2Fi%3E%2C%20112691.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1016%5C%2Fj.solener.2024.112691%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1016%5C%2Fj.solener.2024.112691%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Slot-die%20coating%20of%20niobium%20pentoxide%20applied%20as%20electron%20transport%20layer%20for%20perovskite%20solar%20cells%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Lucas%20J.%22%2C%22lastName%22%3A%22Affon%5Cu00e7o%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Silvia%20L.%22%2C%22lastName%22%3A%22Fernandes%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jo%5Cu00e3o%20P.F.%22%2C%22lastName%22%3A%22Assun%5Cu00e7%5Cu00e3o%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Janardan%22%2C%22lastName%22%3A%22Dagar%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Carlos%20F.%20De%20O.%22%2C%22lastName%22%3A%22Graeff%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jos%5Cu00e9%20H.D.%22%2C%22lastName%22%3A%22Da%20Silva%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Eva%22%2C%22lastName%22%3A%22Unger%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%222024-06-18%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1016%5C%2Fj.solener.2024.112691%22%2C%22ISSN%22%3A%220038092X%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Flinkinghub.elsevier.com%5C%2Fretrieve%5C%2Fpii%5C%2FS0038092X24003864%22%2C%22collections%22%3A%5B%22JKNPB296%22%5D%2C%22dateModified%22%3A%222024-08-06T12%3A50%3A59Z%22%7D%7D%2C%7B%22key%22%3A%22BMHTTNL4%22%2C%22library%22%3A%7B%22id%22%3A11840969%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Gierster%20et%20al.%22%2C%22parsedDate%22%3A%222024-06-14%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EGierster%2C%20L.%2C%20Turkina%2C%20O.%2C%20Deinert%2C%20J.%2C%20Vempati%2C%20S.%2C%20Baeta%2C%20E.%2C%20Garmshausen%2C%20Y.%2C%20Hecht%2C%20S.%2C%20Draxl%2C%20C.%2C%20%26amp%3B%20St%26%23xE4%3Bhler%2C%20J.%20%282024%29.%20Right%20On%20Time%3A%20Ultrafast%20Charge%20Separation%20Before%20Hybrid%20Exciton%20Formation.%20%3Ci%3EAdvanced%20Science%3C%5C%2Fi%3E%2C%202403765.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1002%5C%2Fadvs.202403765%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1002%5C%2Fadvs.202403765%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Right%20On%20Time%3A%20Ultrafast%20Charge%20Separation%20Before%20Hybrid%20Exciton%20Formation%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Lukas%22%2C%22lastName%22%3A%22Gierster%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Olga%22%2C%22lastName%22%3A%22Turkina%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jan%5Cu2010Christoph%22%2C%22lastName%22%3A%22Deinert%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Sesha%22%2C%22lastName%22%3A%22Vempati%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Elsie%22%2C%22lastName%22%3A%22Baeta%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Yves%22%2C%22lastName%22%3A%22Garmshausen%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Stefan%22%2C%22lastName%22%3A%22Hecht%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Claudia%22%2C%22lastName%22%3A%22Draxl%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Julia%22%2C%22lastName%22%3A%22St%5Cu00e4hler%22%7D%5D%2C%22abstractNote%22%3A%22Abstract%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20Organic%5C%2Finorganic%20hybrid%20systems%20offer%20great%20potential%20for%20novel%20solar%20cell%20design%20combining%20the%20tunability%20of%20organic%20chromophore%20absorption%20properties%20with%20high%20charge%20carrier%20mobilities%20of%20inorganic%20semiconductors.%20However%2C%20often%20such%20material%20combinations%20do%20not%20show%20the%20expected%20performance%3A%20while%20ZnO%2C%20for%20example%2C%20basically%20exhibits%20all%20necessary%20properties%20for%20a%20successful%20application%20in%20light%5Cu2010harvesting%2C%20it%20was%5Cu00a0clearly%20outpaced%20by%20TiO%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%202%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20in%20terms%20of%20charge%20separation%20efficiency.%20The%20origin%20of%20this%20deficiency%20has%20long%20been%20debated.%20This%20study%20employs%20femtosecond%20time%5Cu2010resolved%20photoelectron%20spectroscopy%20and%20many%5Cu2010body%20ab%20initio%20calculations%20to%20identify%20and%20quantify%20all%20elementary%20steps%20leading%20to%20the%20suppression%20of%20charge%20separation%20at%20an%20exemplary%20organic%5C%2FZnO%20interface.%20It%20is%20demonstrated%20that%20charge%20separation%20indeed%20occurs%20efficiently%20on%20ultrafast%20%28350%5Cu00a0fs%29%20timescales%2C%20but%20that%20electrons%20are%20recaptured%20at%20the%20interface%20on%20a%20100%5Cu00a0ps%20timescale%20and%20subsequently%20trapped%20in%20a%20strongly%20bound%20%280.7%5Cu00a0eV%29%20hybrid%20exciton%20state%20with%20a%20lifetime%20exceeding%205%5Cu00a0%5Cu00b5s.%20Thus%2C%20initially%20successful%20charge%20separation%20is%20followed%20by%20delayed%20electron%20capture%20at%20the%20interface%2C%20leading%20to%20apparently%20low%20charge%20separation%20efficiencies.%20This%20finding%20provides%20a%20sufficiently%20large%20time%20frame%20for%20counter%5Cu2010measures%20in%20device%20design%20to%20successfully%20implement%20specifically%20ZnO%20and%2C%20moreover%2C%20invites%20material%20scientists%20to%20revisit%20charge%20separation%20in%20various%20kinds%20of%20previously%20discarded%20hybrid%5Cu00a0systems.%22%2C%22date%22%3A%222024-06-14%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1002%5C%2Fadvs.202403765%22%2C%22ISSN%22%3A%222198-3844%2C%202198-3844%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fonlinelibrary.wiley.com%5C%2Fdoi%5C%2F10.1002%5C%2Fadvs.202403765%22%2C%22collections%22%3A%5B%22JKNPB296%22%5D%2C%22dateModified%22%3A%222024-08-06T10%3A58%3A32Z%22%7D%7D%2C%7B%22key%22%3A%22IINLDPTN%22%2C%22library%22%3A%7B%22id%22%3A11840969%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Geisler%20et%20al.%22%2C%22parsedDate%22%3A%222024-06-14%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EGeisler%2C%20J.%2C%20Pfeiffer%2C%20L.%2C%20A.%20Ferrero%2C%20G.%2C%20Axmann%2C%20P.%2C%20%26amp%3B%20Adelhelm%2C%20P.%20%282024%29.%20Setup%20Design%20and%20Data%20Evaluation%20for%20DEMS%20in%20Sodium%20Ion%20Batteries%2C%20Demonstrated%20on%20a%20Mn%26%23×2010%3BRich%20Cathode%20Material.%20%3Ci%3EBatteries%20%26amp%3B%20Supercaps%3C%5C%2Fi%3E%2C%20%3Ci%3E7%3C%5C%2Fi%3E%287%29%2C%20e202400006.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1002%5C%2Fbatt.202400006%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1002%5C%2Fbatt.202400006%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Setup%20Design%20and%20Data%20Evaluation%20for%20DEMS%20in%20Sodium%20Ion%20Batteries%2C%20Demonstrated%20on%20a%20Mn%5Cu2010Rich%20Cathode%20Material%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jonas%22%2C%22lastName%22%3A%22Geisler%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Lukas%22%2C%22lastName%22%3A%22Pfeiffer%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Guillermo%22%2C%22lastName%22%3A%22A.%20Ferrero%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Peter%22%2C%22lastName%22%3A%22Axmann%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Philipp%22%2C%22lastName%22%3A%22Adelhelm%22%7D%5D%2C%22abstractNote%22%3A%22Abstract%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20Differential%20electrochemical%20mass%20spectrometry%20%28DEMS%29%20is%20a%20powerful%20operando%20method%20for%20analyzing%20side%20reactions%20in%20batteries.%20We%20describe%20our%20DEMS%20setup%20highlighting%20the%20relevance%20for%20implementing%20a%20reference%20electrode.%20Although%20the%20method%20provides%20valuable%20information%2C%20the%20correct%20assignment%20of%20the%20DEMS%20signals%20to%20types%20of%20gases%20and%20quantifying%20the%20amounts%20released%20can%20be%20challenging.%20A%20frequent%20limitation%20is%20that%20gas%20concentrations%20are%20calculated%20from%20single%20m%5C%2Fz%20ratios.%20This%20has%20the%20drawback%20of%20overlooking%20unexpected%20gases%20which%20can%20cause%20misinterpretation%20of%20the%20signal%20intensities%2C%20or%20even%20attributing%20to%20gases%20which%20are%20not%20actually%20formed.%20We%20present%20a%20multiple%20concentration%20determination%20%28MCD%29%20algorithm%20that%20uses%20the%20full%20MS%5Cu2010spectra%2C%20which%20allows%20a%20more%20reliable%20determination%20of%20the%20gas%20release.%20We%20demonstrate%20this%20approach%20for%20Na%5Cu2010ion%20half%5Cu2010cells%20with%20P2%5Cu2010Na%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%200.67%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20Mn%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%203%5C%2F4%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20Ni%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%201%5C%2F4%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20O%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%202%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%28NaMNO%29%20as%20cathode%20active%20material%20%28CAM%29.%20Studying%20the%20gassing%20behavior%20for%20two%20electrolyte%20formulations%20%281%5Cu2005M%20NaPF%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%206%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20in%20propylene%20carbonate%20%28PC%29%20and%20in%20diglyme%20%282G%29%29.%20Against%20the%20general%20belief%20that%20glymes%20lead%20to%20more%20gassing%20at%20high%20potentials%2C%20we%20find%20that%20gas%20evolution%20for%20PC%20electrolytes%20is%20larger%20compared%20to%202G%20electrolytes.%20Dimethyl%20ether%20is%20found%20to%20be%20a%20decomposition%20product%20of%202G.%20Pressure%20change%20measurements%20are%20used%20to%20independently%20validate%20the%20gas%20quantification.%22%2C%22date%22%3A%222024-06-14%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1002%5C%2Fbatt.202400006%22%2C%22ISSN%22%3A%222566-6223%2C%202566-6223%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fchemistry-europe.onlinelibrary.wiley.com%5C%2Fdoi%5C%2F10.1002%5C%2Fbatt.202400006%22%2C%22collections%22%3A%5B%22JKNPB296%22%5D%2C%22dateModified%22%3A%222024-08-02T11%3A07%3A33Z%22%7D%7D%2C%7B%22key%22%3A%22S242DYJP%22%2C%22library%22%3A%7B%22id%22%3A11840969%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Liu%20et%20al.%22%2C%22parsedDate%22%3A%222024-06-12%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3ELiu%2C%20Y.%2C%20Wang%2C%20Y.%2C%20%26amp%3B%20Pinna%2C%20N.%20%282024%29.%20Atomically%20Precise%20Metal%20Nanoclusters%20for%20Photocatalytic%20Water%20Splitting.%20%3Ci%3EACS%20Materials%20Letters%3C%5C%2Fi%3E%2C%20%3Ci%3E6%3C%5C%2Fi%3E%287%29%2C%202995%26%23×2013%3B3006.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1021%5C%2Facsmaterialslett.4c00622%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1021%5C%2Facsmaterialslett.4c00622%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Atomically%20Precise%20Metal%20Nanoclusters%20for%20Photocatalytic%20Water%20Splitting%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Ye%22%2C%22lastName%22%3A%22Liu%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Yu%22%2C%22lastName%22%3A%22Wang%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Nicola%22%2C%22lastName%22%3A%22Pinna%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%222024-06-12%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1021%5C%2Facsmaterialslett.4c00622%22%2C%22ISSN%22%3A%222639-4979%2C%202639-4979%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fpubs.acs.org%5C%2Fdoi%5C%2F10.1021%5C%2Facsmaterialslett.4c00622%22%2C%22collections%22%3A%5B%22JKNPB296%22%5D%2C%22dateModified%22%3A%222024-08-06T12%3A40%3A14Z%22%7D%7D%2C%7B%22key%22%3A%22FE9QE574%22%2C%22library%22%3A%7B%22id%22%3A11840969%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Speulmanns%20et%20al.%22%2C%22parsedDate%22%3A%222024-06-08%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3ESpeulmanns%2C%20J.%2C%20B%26%23xF6%3Bnhardt%2C%20S.%2C%20Weinreich%2C%20W.%2C%20%26amp%3B%20Adelhelm%2C%20P.%20%282024%29.%20Interface%26%23×2010%3BEngineered%20Atomic%20Layer%20Deposition%20of%203D%20Li%3Csub%3E4%3C%5C%2Fsub%3ETi%3Csub%3E5%3C%5C%2Fsub%3EO%3Csub%3E12%3C%5C%2Fsub%3E%20for%20High%26%23×2010%3BCapacity%20Lithium%26%23×2010%3BIon%203D%20Thin%26%23×2010%3BFilm%20Batteries.%20%3Ci%3ESmall%3C%5C%2Fi%3E%2C%202403453.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1002%5C%2Fsmll.202403453%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1002%5C%2Fsmll.202403453%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Interface%5Cu2010Engineered%20Atomic%20Layer%20Deposition%20of%203D%20Li%3Csub%3E4%3C%5C%2Fsub%3ETi%3Csub%3E5%3C%5C%2Fsub%3EO%3Csub%3E12%3C%5C%2Fsub%3E%20for%20High%5Cu2010Capacity%20Lithium%5Cu2010Ion%203D%20Thin%5Cu2010Film%20Batteries%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jan%22%2C%22lastName%22%3A%22Speulmanns%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Sascha%22%2C%22lastName%22%3A%22B%5Cu00f6nhardt%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Wenke%22%2C%22lastName%22%3A%22Weinreich%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Philipp%22%2C%22lastName%22%3A%22Adelhelm%22%7D%5D%2C%22abstractNote%22%3A%22Abstract%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20Upcoming%20energy%5Cu2010autonomous%20mm%5Cu2010scale%20Internet%5Cu2010of%5Cu2010things%20devices%20require%20high%5Cu2010energy%20and%20high%5Cu2010power%20microbatteries.%20On%5Cu2010chip%203D%20thin%5Cu2010film%20batteries%20%28TFBs%29%20are%20the%20most%20promising%20option%20but%20lack%20high%5Cu2010rate%20anode%20materials.%20Here%2C%20Li%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%204%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20Ti%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%205%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20O%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%2012%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20thin%20films%20fabricated%20by%20atomic%20layer%20deposition%20%28ALD%29%20are%20electrochemically%20evaluated%20on%203D%20substrates%20for%20the%20first%20time.%20The%203D%20Li%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%204%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20Ti%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%205%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20O%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%2012%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20reveals%20an%20excellent%20footprint%20capacity%20of%2020.23%5Cu00a0%5Cu00b5Ah%5Cu00a0cm%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu22122%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20at%201%20C.%20The%20outstanding%20high%5Cu2010rate%20capability%20is%20demonstrated%20with%207.75%5Cu00a0%5Cu00b5Ah%5Cu00a0cm%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu22122%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20at%205%5Cu00a0mA%5Cu00a0cm%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu22122%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%28250%20C%29%20while%20preserving%20a%20remarkable%20capacity%20retention%20of%2097.4%25%20after%20500%20cycles.%20Planar%20films%20with%20various%20thicknesses%20exhibit%20electrochemical%20nanoscale%20effects%20and%20are%20tuned%20to%20maximize%20performance.%20The%20developed%20ALD%20process%20enables%20conformal%20high%5Cu2010quality%20spinel%20%28111%29%5Cu2010textured%20Li%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%204%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20Ti%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%205%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20O%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%2012%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20films%20on%20Si%20substrates%20with%20an%20area%20enhancement%20of%209.%20Interface%20engineering%20by%20employing%20ultrathin%20AlO%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20x%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20on%20the%20current%20collector%20facilitates%20a%20required%20crystallization%20time%20reduction%20which%20ensures%20high%20film%20and%20interface%20quality%20and%20prospective%20on%5Cu2010chip%20integration.%20This%20work%20demonstrates%20that%203D%20Li%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%204%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20Ti%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%205%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20O%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%2012%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20by%20ALD%20can%20be%20an%20attractive%20solution%20for%20the%20microelectronics%5Cu2010compatible%20fabrication%20of%20scalable%20high%5Cu2010energy%20and%20high%5Cu2010power%20Li%5Cu2010ion%203D%20TFBs.%22%2C%22date%22%3A%222024-06-08%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1002%5C%2Fsmll.202403453%22%2C%22ISSN%22%3A%221613-6810%2C%201613-6829%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fonlinelibrary.wiley.com%5C%2Fdoi%5C%2F10.1002%5C%2Fsmll.202403453%22%2C%22collections%22%3A%5B%22JKNPB296%22%5D%2C%22dateModified%22%3A%222024-08-02T11%3A11%3A41Z%22%7D%7D%2C%7B%22key%22%3A%22QXWWLPAZ%22%2C%22library%22%3A%7B%22id%22%3A11840969%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Triolo%20et%20al.%22%2C%22parsedDate%22%3A%222024-06-07%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3ETriolo%2C%20C.%2C%20Maisuradze%2C%20M.%2C%20Liu%2C%20Y.%2C%20Li%2C%20M.%2C%20Pagot%2C%20G.%2C%20Ponti%2C%20A.%2C%20Di%20Noto%2C%20V.%2C%20Aquilanti%2C%20G.%2C%20Pinna%2C%20N.%2C%20Giorgetti%2C%20M.%2C%20%26amp%3B%20Santangelo%2C%20S.%20%282024%29.%20Role%20of%20the%20Microstructure%20in%20the%20Li-Storage%20Performance%20of%20Spinel-Structured%20High-Entropy%20%28Mn%2CFe%2CCo%2CNi%2CZn%29%20Oxide%20Nanofibers.%20%3Ci%3EJournal%20of%20The%20Electrochemical%20Society%3C%5C%2Fi%3E%2C%20%3Ci%3E171%3C%5C%2Fi%3E%286%29%2C%20060509.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1149%5C%2F1945-7111%5C%2Fad51aa%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1149%5C%2F1945-7111%5C%2Fad51aa%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Role%20of%20the%20Microstructure%20in%20the%20Li-Storage%20Performance%20of%20Spinel-Structured%20High-Entropy%20%28Mn%2CFe%2CCo%2CNi%2CZn%29%20Oxide%20Nanofibers%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Claudia%22%2C%22lastName%22%3A%22Triolo%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Mariam%22%2C%22lastName%22%3A%22Maisuradze%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Yanchen%22%2C%22lastName%22%3A%22Liu%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Min%22%2C%22lastName%22%3A%22Li%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Gioele%22%2C%22lastName%22%3A%22Pagot%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Alessandro%22%2C%22lastName%22%3A%22Ponti%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Vito%22%2C%22lastName%22%3A%22Di%20Noto%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Giuliana%22%2C%22lastName%22%3A%22Aquilanti%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Nicola%22%2C%22lastName%22%3A%22Pinna%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Marco%22%2C%22lastName%22%3A%22Giorgetti%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Saveria%22%2C%22lastName%22%3A%22Santangelo%22%7D%5D%2C%22abstractNote%22%3A%22High-entropy%20oxides%20with%20spinel%20structure%20%28SHEOs%29%20are%20promising%20anode%20materials%20for%20next-generation%20lithium-ion%20batteries%20%28LIBs%29.%20In%20this%20work%2C%20electrospun%20%28Mn%2CFe%2CCo%2CNi%2CZn%29%20SHEO%20nanofibers%20produced%20under%20different%20conditions%20are%20evaluated%20as%20anode%20materials%20in%20LIBs%20and%20thoroughly%20characterised%20by%20a%20combination%20of%20analytical%20techniques.%20The%20variation%20of%20metal%20load%20%2819.23%20or%2038.46%20wt%25%20relative%20to%20the%20polymer%29%20in%20the%20precursor%20solution%20and%20of%20calcination%20conditions%20%28700%20%5Cu00b0C%5C%2F0.5%20h%2C%20or%20700%20%5Cu00b0C%5C%2F2%20h%20followed%20by%20900%20%5Cu00b0C%5C%2F2%20h%29%20affects%20the%20morphology%2C%20microstructure%2C%20crystalline%20phase%2C%20and%20surface%20composition%20of%20the%20pristine%20SHEO%20nanofibers%20and%20the%20resulting%20electrochemical%20performance%2C%20whereas%20mechanism%20of%20Li%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%2B%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20storage%20does%20not%20substantially%20change.%20Causes%20of%20long-term%20%28%5Cu2265650%20cycles%29%20capacity%20fading%20are%20elucidated%20via%20ex%20situ%20synchrotron%20X-ray%20absorption%20spectroscopy.%20The%20results%20evidence%20that%20the%20larger%20amounts%20of%20Fe%2C%20Co%2C%20and%20Ni%20cations%20irreversibly%20reduced%20to%20the%20metallic%20form%20during%20cycling%20are%20responsible%20for%20faster%20capacity%20fading%20in%20nanofibers%20calcined%20under%20milder%20conditions.%20The%20microstructure%20of%20the%20active%20material%20plays%20a%20key%20role.%20Nanofibers%20composed%20by%20larger%20and%20better-crystallized%20grains%2C%20where%20a%20stable%20solid%5C%2Felectrolyte%20interphase%20forms%2C%20exhibit%20superior%20long-term%20stability%20%28453%20mAh%20g%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu22121%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20after%20550%20cycles%20at%200.5%20A%20g%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu22121%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%29%20and%20rate-capability%20%28210%20mAh%20g%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu22121%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20at%202%20A%20g%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu22121%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%29.%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%2C%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20Highlights%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20High-entropy%20%28Mn%2CFe%2CCo%2CNi%2CZn%29%20oxide%20nanofibers%20%28NFs%29%20are%20evaluated%20as%20LIB%20anodes.%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20The%20existence%20of%20a%20microstructure-performance%20relationship%20is%20demonstrated.%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20NFs%20with%20larger%20and%20less%20defective%20grains%20show%20superior%20stability%20and%20rate-capability.%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20Best%20anodes%20deliver%20453%20mAh%20g%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu22121%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20after%20550%20cycles%20at%200.5%20A%20g%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu22121%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%2C%20and%20210%20mAh%20g%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu22121%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20at%202%20A%20g%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu22121%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20.%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20Long-term%20%28%5Cu2265650%20cycles%29%20capacity%20fading%20is%20due%20to%20the%20formation%20of%20Fe%5Cu00b0%2C%20Co%5Cu00b0%2C%20and%20Ni%5Cu00b0.%22%2C%22date%22%3A%222024-06-07%22%2C%22language%22%3A%22%22%2C%22DOI%22%3A%2210.1149%5C%2F1945-7111%5C%2Fad51aa%22%2C%22ISSN%22%3A%220013-4651%2C%201945-7111%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fiopscience.iop.org%5C%2Farticle%5C%2F10.1149%5C%2F1945-7111%5C%2Fad51aa%22%2C%22collections%22%3A%5B%22JKNPB296%22%5D%2C%22dateModified%22%3A%222024-08-06T12%3A42%3A02Z%22%7D%7D%2C%7B%22key%22%3A%222ZJZYXJY%22%2C%22library%22%3A%7B%22id%22%3A11840969%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Vogt%20et%20al.%22%2C%22parsedDate%22%3A%222024-06-07%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EVogt%2C%20S.%2C%20Petersen%2C%20C.%2C%20Von%20Wenckstern%2C%20H.%2C%20Grundmann%2C%20M.%2C%20Schultz%2C%20T.%2C%20%26amp%3B%20Koch%2C%20N.%20%282024%29.%20Zr%20doping%20in%20pulsed-laser-deposited%20%26%23x3B1%3B-Ga%3Csub%3E2%3C%5C%2Fsub%3EO%3Csub%3E3%3C%5C%2Fsub%3E%20for%20device%20applications.%20%3Ci%3EPhysical%20Review%20Applied%3C%5C%2Fi%3E%2C%20%3Ci%3E21%3C%5C%2Fi%3E%286%29%2C%20064016.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1103%5C%2FPhysRevApplied.21.064016%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1103%5C%2FPhysRevApplied.21.064016%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Zr%20doping%20in%20pulsed-laser-deposited%20%5Cu03b1-Ga%3Csub%3E2%3C%5C%2Fsub%3EO%3Csub%3E3%3C%5C%2Fsub%3E%20for%20device%20applications%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22S.%22%2C%22lastName%22%3A%22Vogt%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22C.%22%2C%22lastName%22%3A%22Petersen%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22H.%22%2C%22lastName%22%3A%22Von%20Wenckstern%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.%22%2C%22lastName%22%3A%22Grundmann%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22T.%22%2C%22lastName%22%3A%22Schultz%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22N.%22%2C%22lastName%22%3A%22Koch%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%222024-06-07%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1103%5C%2FPhysRevApplied.21.064016%22%2C%22ISSN%22%3A%222331-7019%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Flink.aps.org%5C%2Fdoi%5C%2F10.1103%5C%2FPhysRevApplied.21.064016%22%2C%22collections%22%3A%5B%22JKNPB296%22%5D%2C%22dateModified%22%3A%222024-08-06T12%3A25%3A31Z%22%7D%7D%2C%7B%22key%22%3A%22Y55HL6RR%22%2C%22library%22%3A%7B%22id%22%3A11840969%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Li%20et%20al.%22%2C%22parsedDate%22%3A%222024-06-07%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3ELi%2C%20G.%2C%20Liu%2C%20Y.%2C%20Schultz%2C%20T.%2C%20Exner%2C%20M.%2C%20Muydinov%2C%20R.%2C%20Wang%2C%20H.%2C%20Scheurell%2C%20K.%2C%20Huang%2C%20J.%2C%20Szymoniak%2C%20P.%2C%20Pinna%2C%20N.%2C%20Koch%2C%20N.%2C%20Adelhelm%2C%20P.%2C%20%26amp%3B%20Bojdys%2C%20M.%20J.%20%282024%29.%20One%26%23×2010%3BPot%20Synthesis%20of%20High%26%23×2010%3BCapacity%20Sulfur%20Cathodes%20via%20In%26%23×2010%3BSitu%20Polymerization%20of%20a%20Porous%20Imine%26%23×2010%3BBased%20Polymer.%20%3Ci%3EAngewandte%20Chemie%20International%20Edition%3C%5C%2Fi%3E%2C%20%3Ci%3E63%3C%5C%2Fi%3E%2828%29%2C%20e202400382.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1002%5C%2Fanie.202400382%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1002%5C%2Fanie.202400382%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22One%5Cu2010Pot%20Synthesis%20of%20High%5Cu2010Capacity%20Sulfur%20Cathodes%20via%20In%5Cu2010Situ%20Polymerization%20of%20a%20Porous%20Imine%5Cu2010Based%20Polymer%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Guiping%22%2C%22lastName%22%3A%22Li%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Ye%22%2C%22lastName%22%3A%22Liu%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Thorsten%22%2C%22lastName%22%3A%22Schultz%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Moritz%22%2C%22lastName%22%3A%22Exner%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Ruslan%22%2C%22lastName%22%3A%22Muydinov%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Hui%22%2C%22lastName%22%3A%22Wang%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Kerstin%22%2C%22lastName%22%3A%22Scheurell%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jieyang%22%2C%22lastName%22%3A%22Huang%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Paulina%22%2C%22lastName%22%3A%22Szymoniak%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Nicola%22%2C%22lastName%22%3A%22Pinna%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Norbert%22%2C%22lastName%22%3A%22Koch%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Philipp%22%2C%22lastName%22%3A%22Adelhelm%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Michael%20J.%22%2C%22lastName%22%3A%22Bojdys%22%7D%5D%2C%22abstractNote%22%3A%22Abstract%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20Lithium%5Cu2010ion%20batteries%2C%20essential%20for%20electronics%20and%20electric%20vehicles%2C%20predominantly%20use%20cathodes%20made%20from%20critical%20materials%20like%20cobalt.%20Sulfur%5Cu2010based%20cathodes%2C%20offering%20a%20high%20theoretical%20capacity%20of%201675%5Cu2005mAh%5Cu2009g%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu22121%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20and%20environmental%20advantages%20due%20to%20sulfur%27s%20abundance%20and%20lower%20toxicity%2C%20present%20a%20more%20sustainable%20alternative.%20However%2C%20state%5Cu2010of%5Cu2010the%5Cu2010art%20sulfur%5Cu2010based%20electrodes%20do%20not%20reach%20the%20theoretical%20capacities%2C%20mainly%20because%20conventional%20electrode%20production%20relies%20on%20mixing%20of%20components%20into%20weakly%20coordinated%20slurries.%20Consequently%2C%20sulfur%5Cu2018s%20mobility%20leads%20to%20battery%20degradation%5Cu2014an%20effect%20known%20as%20the%20%5Cu201csulfur%5Cu2010shuttle%5Cu201d.%20This%20study%20introduces%20a%20solution%20by%20developing%20a%20microporous%2C%20covalently%5Cu2010bonded%2C%20imine%5Cu2010based%20polymer%20network%20grown%20in%20situ%20around%20sulfur%20particles%20on%20the%20current%20collector.%20The%20polymer%20network%20%28i%29%20enables%20selective%20transport%20of%20electrolyte%20and%20Li%5Cu2010ions%20through%20pores%20of%20defined%20size%2C%20and%20%28ii%29%20acts%20as%20a%20robust%20host%20to%20retain%20the%20active%20component%20of%20the%20electrode%20%28sulfur%20species%29.%20The%20resulting%20cathode%20has%20superior%20rate%20performance%20from%200.1%5Cu2005C%20%281360%5Cu2005mAh%5Cu2009g%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu22121%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%29%20to%203%5Cu2005C%20%28807%5Cu2005mAh%5Cu2009g%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu22121%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%29.%20Demonstrating%20a%20high%5Cu2010performance%2C%20sustainable%20sulfur%20cathode%20produced%20via%20a%20simple%20one%5Cu2010pot%20process%2C%20our%20research%20underlines%20the%20potential%20of%20microporous%20polymers%20in%20addressing%20sulfur%20diffusion%20issues%2C%20paving%20the%20way%20for%20sulfur%20electrodes%20as%20viable%20alternatives%20to%20traditional%20metal%5Cu2010based%20cathodes.%22%2C%22date%22%3A%222024-06-07%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1002%5C%2Fanie.202400382%22%2C%22ISSN%22%3A%221433-7851%2C%201521-3773%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fonlinelibrary.wiley.com%5C%2Fdoi%5C%2F10.1002%5C%2Fanie.202400382%22%2C%22collections%22%3A%5B%22JKNPB296%22%5D%2C%22dateModified%22%3A%222024-08-02T11%3A06%3A27Z%22%7D%7D%2C%7B%22key%22%3A%2244UAVT3N%22%2C%22library%22%3A%7B%22id%22%3A11840969%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Yang%20et%20al.%22%2C%22parsedDate%22%3A%222024-05-18%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EYang%2C%20W.%2C%20Zhao%2C%20X.%2C%20Guo%2C%20Z.%2C%20Sun%2C%20H.%2C%20%26amp%3B%20List-Kratochvil%2C%20E.%20J.%20W.%20%282024%29.%20A%20compact%20tri-notched%20flexible%20UWB%20antenna%20based%20on%20an%20inkjet-printable%20and%20plasma-activated%20silver%20nano%20ink.%20%3Ci%3EScientific%20Reports%3C%5C%2Fi%3E%2C%20%3Ci%3E14%3C%5C%2Fi%3E%281%29%2C%2011407.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1038%5C%2Fs41598-024-62253-2%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1038%5C%2Fs41598-024-62253-2%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22A%20compact%20tri-notched%20flexible%20UWB%20antenna%20based%20on%20an%20inkjet-printable%20and%20plasma-activated%20silver%20nano%20ink%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Wendong%22%2C%22lastName%22%3A%22Yang%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Xun%22%2C%22lastName%22%3A%22Zhao%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Zihao%22%2C%22lastName%22%3A%22Guo%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Haoqiang%22%2C%22lastName%22%3A%22Sun%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Emil%20J.%20W.%22%2C%22lastName%22%3A%22List-Kratochvil%22%7D%5D%2C%22abstractNote%22%3A%22Abstract%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20The%20rapid%20development%20of%20ultrawideband%20%28UWB%29%20communication%20systems%20has%20resulted%20in%20increasing%20performance%20requirements%20for%20the%20antenna%20system.%20In%20addition%20to%20a%20wide%20bandwidth%2C%20fast%20propagation%20rates%20and%20compact%20dimensions%2C%20flexibility%2C%20wearability%20or%20portability%20are%20also%20desirable%20for%20UWB%20antennas%2C%20as%20are%20excellent%20notch%20characteristics.%20Although%20progress%20has%20been%20made%20in%20the%20development%20of%20flexible%5C%2Fwearable%20antennas%20desired%20notch%20properties%20are%20still%20rather%20limited.%20Moreover%2C%20most%20presently%20available%20flexible%20UWB%20antennas%20are%20fabricated%20using%20environmentally%20not%20attractive%20subtractive%20etching-based%20processes.%20The%20usage%20of%20facile%20additive%20sustainably%20inkjet%20printing%20processes%20also%20utilizing%20low%20temperature%20plasma-activated%20conductive%20inks%20is%20rarely%20reported.%20In%20addition%2C%20the%20currently%20used%20tri-notched%20flexible%20UWB%20antenna%20designs%20have%20a%20relatively%20large%20footprint%2C%20which%20poses%20difficulties%20when%20integrated%20into%20miniaturized%20and%20compact%20communication%20devices.%20In%20this%20work%2C%20a%20silver%20nano%20ink%20is%20used%20to%20fabricate%20the%20antenna%20via%20inkjet%20printing%20and%20an%20efficient%20plasma%20sintering%20procedure.%20For%20the%20targeted%20UWB%20applications%20miniaturized%20tri-notched%20flexible%20antenna%20is%20realized%20on%20a%20flexible%20polyethylene%20terephthalate%20%28PET%29%20substrate%20with%20a%20compact%20size%20of%2017.6%20mm%20%5Cu00d7%2016%20mm%20%5Cu00d7%200.12%20mm.%20The%20antenna%20operates%20in%20the%20UWB%20frequency%20band%20%282.9%5Cu201310.61%20GHz%29%2C%20and%20can%20shield%20interferences%20from%20WiMAX%20%283.3%5Cu20133.6%20GHz%29%2C%20WLAN%20%285.150%5Cu20135.825%20GHz%29%20and%20X-uplink%20%287.9%5Cu20138.4%20GHz%29%20bands%2C%20as%20well%20as%20exhibits%20a%20certain%20of%20bendability.%20Three%20nested%20%5C%22C%5C%22%20slots%20of%20different%20sizes%20were%20adopted%20to%20achieve%20notch%20features.%20The%20simulation%20and%20test%20results%20demonstrate%20that%20the%20proposed%20antenna%20can%20generate%20signal%20radiation%20in%20the%20desired%20UWB%20frequency%20band%20while%20retaining%20the%20desired%20notch%20properties%20and%20having%20acceptable%20SAR%20values%20on-body%2C%20making%20it%20a%20viable%20candidate%20for%20usage%20in%20flexible%20or%20wearable%20communication%20transmission%20devices.%20The%20research%20provides%20a%20facile%20and%20highly%20efficient%20method%20for%20fabricating%20flexible%5C%2Fwearable%20UWB%20antennas%2C%20that%20is%2C%20the%20effective%20combination%20of%20inkjet%20printing%20processing%2C%20flexible%20substrates%2C%20low%20temperature-activated%20conductive%20ink%20and%20antenna%20structure%20design.%22%2C%22date%22%3A%222024-05-18%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1038%5C%2Fs41598-024-62253-2%22%2C%22ISSN%22%3A%222045-2322%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fwww.nature.com%5C%2Farticles%5C%2Fs41598-024-62253-2%22%2C%22collections%22%3A%5B%22JKNPB296%22%5D%2C%22dateModified%22%3A%222024-08-06T12%3A33%3A44Z%22%7D%7D%2C%7B%22key%22%3A%22C8ARNTK2%22%2C%22library%22%3A%7B%22id%22%3A11840969%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Wei%20et%20al.%22%2C%22parsedDate%22%3A%222024-05-17%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EWei%2C%20X.%2C%20Li%2C%20K.%2C%20Zhu%2C%20D.%2C%20Pinna%2C%20N.%2C%20Zhu%2C%20Y.%2C%20%26amp%3B%20Quan%2C%20T.%20%282024%29.%20Template-free%20synthesis%20of%20Co%3Csub%3E4%3C%5C%2Fsub%3ES%3Csub%3E3%3C%5C%2Fsub%3E%20nanotubes%20derived%20from%20urchin-like%20clusters%20for%20sustainable%20molten-state%20high-temperature%20lithium%20battery%20applications.%20%3Ci%3EJournal%20of%20Energy%20Storage%3C%5C%2Fi%3E%2C%20%3Ci%3E91%3C%5C%2Fi%3E%2C%20111988.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1016%5C%2Fj.est.2024.111988%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1016%5C%2Fj.est.2024.111988%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Template-free%20synthesis%20of%20Co%3Csub%3E4%3C%5C%2Fsub%3ES%3Csub%3E3%3C%5C%2Fsub%3E%20nanotubes%20derived%20from%20urchin-like%20clusters%20for%20sustainable%20molten-state%20high-temperature%20lithium%20battery%20applications%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Xiaoyu%22%2C%22lastName%22%3A%22Wei%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Kai%22%2C%22lastName%22%3A%22Li%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Dezhan%22%2C%22lastName%22%3A%22Zhu%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Nicola%22%2C%22lastName%22%3A%22Pinna%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Yanli%22%2C%22lastName%22%3A%22Zhu%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Ting%22%2C%22lastName%22%3A%22Quan%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%222024-05-17%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1016%5C%2Fj.est.2024.111988%22%2C%22ISSN%22%3A%222352152X%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Flinkinghub.elsevier.com%5C%2Fretrieve%5C%2Fpii%5C%2FS2352152X24015743%22%2C%22collections%22%3A%5B%22JKNPB296%22%5D%2C%22dateModified%22%3A%222024-05-22T11%3A33%3A07Z%22%7D%7D%5D%7D
Vezzù, K., Triolo, C., Moulaee, K., Pagot, G., Ponti, A., Pinna, N., Neri, G., Santangelo, S., & Di Noto, V. (2024). Interplay Between Calcination Temperature and Alkaline Oxygen Evolution of Electrospun High‐Entropy (Cr1/5Mn1/5Fe1/5Co1/5Ni1/5)3O4 Nanofibers. Small, 2408319. https://doi.org/10.1002/smll.202408319
Fabozzi, F. G., Cojal González, J. D., Severin, N., Rabe, J. P., & Hecht, S. (2024). Voltage-Gated Switching of Moiré Patterns in Epitaxial Molecular Crystals. ACS Nano, 18(49), 33664–33670. https://doi.org/10.1021/acsnano.4c12708
Blum, V., Asahi, R., Autschbach, J., Bannwarth, C., Bihlmayer, G., Blügel, S., Burns, L. A., Crawford, T. D., Dawson, W., De Jong, W. A., Draxl, C., Filippi, C., Genovese, L., Giannozzi, P., Govind, N., Hammes-Schiffer, S., Hammond, J. R., Hourahine, B., Jain, A., … Windus, T. L. (2024). Roadmap on methods and software for electronic structure based simulations in chemistry and materials. Electronic Structure, 6(4), 042501. https://doi.org/10.1088/2516-1075/ad48ec
Tara, A., Schröder, V., Paul, A., Maticiuc, N., Vasquez-Montoya, M. F., Dagar, J., Sharma, S., Gupta, R., List-Kratochvil, E. J. W., Unger, E. L., & Mathies, F. (2024). Inkjet-Printed FASn1–x PbxI3-Based Perovskite Solar Cells. ACS Applied Materials & Interfaces, 16(46), 63520–63527. https://doi.org/10.1021/acsami.4c12477
Orozco-Henao, J. M., Alí, F. L., Azcárate, J. C., Robledo Candia, L. D., Pasquevich, G., Mendoza Zélis, P., Haas, B., Coogan, K., Kirmse, H., Koch, C. T., Vericat, C., Lavorato, G. C., & Fonticelli, M. H. (2024). Oxidation Kinetics of Magnetite Nanoparticles: Blocking Effect of Surface Ligands and Implications for the Design of Magnetic Nanoheaters. Chemistry of Materials, 36(22), 11095–11108. https://doi.org/10.1021/acs.chemmater.4c01959
Gärisch, F., Schröder, V., List‐Kratochvil, E. J. W., & Ligorio, G. (2024). Scalable Fabrication of Neuromorphic Devices Using Inkjet Printing for the Deposition of Organic Mixed Ionic‐Electronic Conductor. Advanced Electronic Materials, 2400479. https://doi.org/10.1002/aelm.202400479
Yang, W., Guo, Z., Hengge, M., & List-Kratochvil, E. J. W. (2024). Plasma-activated copper-alkanolamine precursor paste for printed flexible antenna: formulation, mechanism, and performance evaluation. Journal of Materials Chemistry C, 10.1039.D4TC03346A. https://doi.org/10.1039/D4TC03346A
Monga, S., Jain, M., Draxl, C., & Bhattacharya, S. (2024). Theoretical insights into inorganic antiperovskite nitrides (X3NA: X = Mg, Ca, Sr, Ba; A = As, Sb): An emerging class of materials for photovoltaics. Physical Review Materials, 8(10), 105403. https://doi.org/10.1103/PhysRevMaterials.8.105403
Nerl, H. C., Guerrero-Felipe, J. P., Valencia, A. M., Elyas, K. F., Höflich, K., Koch, C. T., & Cocchi, C. (2024). Mapping the energy-momentum dispersion of hBN excitons and hybrid plasmons in hBN-WSe2 heterostructures. Npj 2D Materials and Applications, 8(1), 68. https://doi.org/10.1038/s41699-024-00500-w
Yang, W., Zhao, X., Nan, J., Hengge, M., & List‐Kratochvil, E. J. W. (2024). Copper Paste Printed Paper‐Based Dual‐Band Antenna for Wearable Wireless Electronics. Advanced Electronic Materials, 2400522. https://doi.org/10.1002/aelm.202400522
Wagner, T., Kraft, R., Nowak, F., Berger, D., Günther, C. M., Çelik, H., Koch, C. T., & Lehmann, M. (2024). The reference window for reduced perturbation of the reference wave in electrical biasing off-axis electron holography. Ultramicroscopy, 267, 114060. https://doi.org/10.1016/j.ultramic.2024.114060
Haas, B., Koch, C. T., & Rez, P. (2024). Perspective on atomic-resolution vibrational electron energy-loss spectroscopy. Applied Physics Letters, 125(15), 150502. https://doi.org/10.1063/5.0231688
Koliyot, R. D., Maticiuc, N., Mathies, F., Levine, I., Dagar, J., Paramasivam, G., Mallick, S., Narasinga Rao, T., Unger, E., & Veerappan, G. (2024). Hybrid Aromatic Fluoro Amine‐Modified SnO2 Electron Transport Layers in Perovskite Solar Cells for Enhanced Efficiency and Stability. Solar RRL, 8(20), 2300921. https://doi.org/10.1002/solr.202300921
Kuban, M., Rigamonti, S., & Draxl, C. (2024). MADAS: a Python framework for assessing similarity in materials-science data. Digital Discovery, 3(12), 2448–2457. https://doi.org/10.1039/D4DD00258J
Puls, S., Nazmutdinova, E., Kalyk, F., Woolley, H. M., Thomsen, J. F., Cheng, Z., Fauchier-Magnan, A., Gautam, A., Gockeln, M., Ham, S.-Y., Hasan, M. T., Jeong, M.-G., Hiraoka, D., Kim, J. S., Kutsch, T., Lelotte, B., Minnmann, P., Miß, V., Motohashi, K., … Vargas-Barbosa, N. M. (2024). Benchmarking the reproducibility of all-solid-state battery cell performance. Nature Energy, 9(10), 1310–1320. https://doi.org/10.1038/s41560-024-01634-3
Asyuda, A., Müller, J., Gholami, M. F., Zykov, A., Pithan, L., Koch, C. T., Rabe, J. P., Opitz, A., & Kowarik, S. (2024). Laser-induced tuning of crystallization in tetracene thin films. Physical Chemistry Chemical Physics, 26(38), 24841–24848. https://doi.org/10.1039/D4CP02430C
Rabe, J. P. (2024). Matters of Free Energy and a Tesseract. In F. Bauer, Y. Kim, S. Marienberg, & W. Schäffner (Eds.), Toward a New Culture of the Material (pp. 281–290). De Gruyter. https://doi.org/10.1515/9783110714883-019
Jozwiak, E., Phan, A., Schultz, T., Koch, N., & Pinna, N. (2024). Structure Properties Correlations on Nickel‐Iron Oxide Catalysts Deposited by Atomic Layer Deposition for the Oxygen Evolution Reaction in Alkaline Media. Advanced Energy and Sustainability Research, 5(11), 2400091. https://doi.org/10.1002/aesr.202400091
Zuber, A., Oikonomou, I. M., Gannon, L., Chunin, I., Reith, L., Can, B., Lounasvuori, M., Schultz, T., Koch, N., McGuinness, C., Menezes, P. W., Nicolosi, V., & Browne, M. P. (2024). Effect of the Precursor Metal Salt on the Oxygen Evolution Reaction for NiFe Oxide Materials. ChemElectroChem, 11(17), e202400151. https://doi.org/10.1002/celc.202400151
Rigamonti, S., Troppenz, M., Kuban, M., Hübner, A., & Draxl, C. (2024). CELL: a Python package for cluster expansion with a focus on complex alloys. Npj Computational Materials, 10(1), 195. https://doi.org/10.1038/s41524-024-01363-x
Ahrling, R., Mitdank, R., Popp, A., Rehm, J., Akhtar, A., Galazka, Z., & Fischer, S. F. (2024). Resistive and ballistic phonon transport in β-Ga2O3. Physical Review B, 110(8), 085302. https://doi.org/10.1103/PhysRevB.110.085302
Levine, I., Menzel, D., Musiienko, A., MacQueen, R., Romano, N., Vasquez-Montoya, M., Unger, E., Mora Perez, C., Forde, A., Neukirch, A. J., Korte, L., & Dittrich, T. (2024). Revisiting Sub-Band Gap Emission Mechanism in 2D Halide Perovskites: The Role of Defect States. Journal of the American Chemical Society, 146(33), 23437–23448. https://doi.org/10.1021/jacs.4c06621
Schmiedecke, B., Wu, B., Schultz, T., Emerenciano, A. A., Sharma, N., Douglas-Henry, D. A., Koutsioukis, A., Görüryılmaz, M. T., Nicolosi, V., Petit, T., Koch, N., Sofer, Z., & Browne, M. P. (2024). Enhancing the oxygen evolution reaction activity of CuCo based hydroxides with V2CTx MXene. Journal of Materials Chemistry A, 10.1039.D4TA02700K. https://doi.org/10.1039/D4TA02700K
Zhang, Z., Wang, R., Mazzio, K. A., Koch, N., & Adelhelm, P. (2024). Silver Thiophosphate (Ag3PS4) as a Multielectron Reaction Active Material for Lithium Solid‐State Batteries. Energy Technology, 2401040. https://doi.org/10.1002/ente.202401040
Tjhe, D. H. L., Ren, X., Jacobs, I. E., D’Avino, G., Mustafa, T. B. E., Marsh, T. G., Zhang, L., Fu, Y., Mansour, A. E., Opitz, A., Huang, Y., Zhu, W., Unal, A. H., Hoek, S., Lemaur, V., Quarti, C., He, Q., Lee, J.-K., McCulloch, I., … Sirringhaus, H. (2024). Non-equilibrium transport in polymer mixed ionic–electronic conductors at ultrahigh charge densities. Nature Materials. https://doi.org/10.1038/s41563-024-01953-6
Jaiswal, A. K., Saha, P., Jiang, J., Suzuki, K., Jasny, A., Schmidt, B. M., Maeda, S., Hecht, S., & Huang, C.-Y. D. (2024). Accessing a Diverse Set of Functional Red-Light Photoswitches by Selective Copper-Catalyzed Indigo N -Arylation. Journal of the American Chemical Society, jacs.4c03543. https://doi.org/10.1021/jacs.4c03543
Merkel, L., Setaro, A., Halbig, C. E., Shimizu, S., Yoshii, T., Nishihara, H., Hilal, T., Algara-Siller, G., Koch, C., & Eigler, S. (2024). Structural model of oxidatively unzipped narrow single-walled carbon nanotubes. Carbon, 229, 119454. https://doi.org/10.1016/j.carbon.2024.119454
Plaickner, J., Petit, T., Bärmann, P., Schultz, T., Koch, N., & Esser, N. (2024). Surface termination effects on Raman spectra of Ti3C2Tx
MXenes: an in situ UHV analysis. Physical Chemistry Chemical Physics, 10.1039.D4CP02197E. https://doi.org/10.1039/D4CP02197E
Yin, X., Yang, L., Zhao, W., Li, Z., Xu, J., Du, Y., Liu, Z., Sun, Y., Deng, Y., Wang, J., Adelhelm, P., Yao, X., Si, R., & Zhou, D. (2024). Synergetic Modulation of Interlayer–Intralayer Spacings for P2-Type Layered Oxide Cathode with Superior Rate Performance. ACS Energy Letters, 3922–3930. https://doi.org/10.1021/acsenergylett.4c01520
Wang, J., Liccardo, L., Habibimarkani, H., Wierzbicka, E., Schultz, T., Koch, N., Moretti, E., & Pinna, N. (2024). Precise control of TiO2 overlayer on hematite nanorod arrays by ALD for the photoelectrochemical water splitting. Sustainable Energy & Fuels, 10.1039.D3SE01633A. https://doi.org/10.1039/D3SE01633A
Zhao, T., Samanta, B., De Irujo-Labalde, X. M., Whang, G., Yadav, N., Kraft, M. A., Adelhelm, P., Hansen, M. R., & Zeier, W. G. (2024). Sodium Metal Oxyhalides NaMOCl4 (M = Nb, Ta) with High Ionic Conductivities. ACS Materials Letters, 3683–3689. https://doi.org/10.1021/acsmaterialslett.4c01145
Speckhard, D., Bechtel, T., Ghiringhelli, L. M., Kuban, M., Rigamonti, S., & Draxl, C. (2024). How big is big data? Faraday Discussions, 10.1039.D4FD00102H. https://doi.org/10.1039/D4FD00102H
Xu, M., Li, W., Zhong, M., Yang, J., Gao, M., Pinna, N., & Lu, X. (2024). Trimetallic FeNiMo Nanofibers as High-Efficiency Electrocatalyst for Robust Oxygen Evolution. ACS Materials Letters, 6(8), 3548–3556. https://doi.org/10.1021/acsmaterialslett.4c00930
Nerl, H. C., Ahart, C. S., Eljarrat, A., Koch, C. T., Cucinotta, C. S., & Plodinec, M. (2024). Transitional surface Pt carbide formation during carbon nanotube growth. Carbon, 228, 119399. https://doi.org/10.1016/j.carbon.2024.119399
Bauer, S., Benner, P., Bereau, T., Blum, V., Boley, M., Carbogno, C., Catlow, C. R. A., Dehm, G., Eibl, S., Ernstorfer, R., Fekete, Á., Foppa, L., Fratzl, P., Freysoldt, C., Gault, B., Ghiringhelli, L. M., Giri, S. K., Gladyshev, A., Goyal, P., … Scheffler, M. (2024). Roadmap on data-centric materials science. Modelling and Simulation in Materials Science and Engineering, 32(6), 063301. https://doi.org/10.1088/1361-651X/ad4d0d
Simon, J. R., Maksimov, D., Lotze, C., Wiechers, P., Felipe, J. P. G., Kobin, B., Schwarz, J., Hecht, S., Franke, K. J., & Rossi, M. (2024). Atomic-scale perspective on individual thiol-terminated molecules anchored to single S vacancies in MoS 2. Physical Review B, 110(4), 045407. https://doi.org/10.1103/PhysRevB.110.045407
Xu, J., Han, P., Jin, Y., Lu, H., Sun, B., Gao, B., He, T., Xu, X., Pinna, N., & Wang, G. (2024). Hybrid Molecular Sieve-Based Interfacial Layer with Physical Confinement and Desolvation Effect for Dendrite-free Zinc Metal Anodes. ACS Nano, 18(28), 18592–18603. https://doi.org/10.1021/acsnano.4c04632
Pela, R. R., & Draxl, C. (2024). Speeding up all-electron real-time TDDFT demonstrated by the exciting package. Computer Physics Communications, 304, 109292. https://doi.org/10.1016/j.cpc.2024.109292
Zhang, Z., Dong, D., Bösking, T., Dang, T., Liu, C., Sun, W., Xie, M., Hecht, S., & Li, T. (2024). Solar Azo‐Switches for Effective E → Z Photoisomerization by Sunlight. Angewandte Chemie International Edition, 63(31), e202404528. https://doi.org/10.1002/anie.202404528
Zhang, W., Liu, Y., Jeppesen, H. S., & Pinna, N. (2024). Stöber method to amorphous metal-organic frameworks and coordination polymers. Nature Communications, 15(1), 5463. https://doi.org/10.1038/s41467-024-49772-2
Affonço, L. J., Fernandes, S. L., Assunção, J. P. F., Dagar, J., Graeff, C. F. D. O., Da Silva, J. H. D., & Unger, E. (2024). Slot-die coating of niobium pentoxide applied as electron transport layer for perovskite solar cells. Solar Energy, 276, 112691. https://doi.org/10.1016/j.solener.2024.112691
Gierster, L., Turkina, O., Deinert, J., Vempati, S., Baeta, E., Garmshausen, Y., Hecht, S., Draxl, C., & Stähler, J. (2024). Right On Time: Ultrafast Charge Separation Before Hybrid Exciton Formation. Advanced Science, 2403765. https://doi.org/10.1002/advs.202403765
Geisler, J., Pfeiffer, L., A. Ferrero, G., Axmann, P., & Adelhelm, P. (2024). Setup Design and Data Evaluation for DEMS in Sodium Ion Batteries, Demonstrated on a Mn‐Rich Cathode Material. Batteries & Supercaps, 7(7), e202400006. https://doi.org/10.1002/batt.202400006
Liu, Y., Wang, Y., & Pinna, N. (2024). Atomically Precise Metal Nanoclusters for Photocatalytic Water Splitting. ACS Materials Letters, 6(7), 2995–3006. https://doi.org/10.1021/acsmaterialslett.4c00622
Speulmanns, J., Bönhardt, S., Weinreich, W., & Adelhelm, P. (2024). Interface‐Engineered Atomic Layer Deposition of 3D Li4Ti5O12 for High‐Capacity Lithium‐Ion 3D Thin‐Film Batteries. Small, 2403453. https://doi.org/10.1002/smll.202403453
Triolo, C., Maisuradze, M., Liu, Y., Li, M., Pagot, G., Ponti, A., Di Noto, V., Aquilanti, G., Pinna, N., Giorgetti, M., & Santangelo, S. (2024). Role of the Microstructure in the Li-Storage Performance of Spinel-Structured High-Entropy (Mn,Fe,Co,Ni,Zn) Oxide Nanofibers. Journal of The Electrochemical Society, 171(6), 060509. https://doi.org/10.1149/1945-7111/ad51aa
Vogt, S., Petersen, C., Von Wenckstern, H., Grundmann, M., Schultz, T., & Koch, N. (2024). Zr doping in pulsed-laser-deposited α-Ga2O3 for device applications. Physical Review Applied, 21(6), 064016. https://doi.org/10.1103/PhysRevApplied.21.064016
Li, G., Liu, Y., Schultz, T., Exner, M., Muydinov, R., Wang, H., Scheurell, K., Huang, J., Szymoniak, P., Pinna, N., Koch, N., Adelhelm, P., & Bojdys, M. J. (2024). One‐Pot Synthesis of High‐Capacity Sulfur Cathodes via In‐Situ Polymerization of a Porous Imine‐Based Polymer. Angewandte Chemie International Edition, 63(28), e202400382. https://doi.org/10.1002/anie.202400382
Yang, W., Zhao, X., Guo, Z., Sun, H., & List-Kratochvil, E. J. W. (2024). A compact tri-notched flexible UWB antenna based on an inkjet-printable and plasma-activated silver nano ink. Scientific Reports, 14(1), 11407. https://doi.org/10.1038/s41598-024-62253-2
Wei, X., Li, K., Zhu, D., Pinna, N., Zhu, Y., & Quan, T. (2024). Template-free synthesis of Co4S3 nanotubes derived from urchin-like clusters for sustainable molten-state high-temperature lithium battery applications. Journal of Energy Storage, 91, 111988. https://doi.org/10.1016/j.est.2024.111988
2023
11840969
7WAEICCJ
2023
1
apa
50
date
desc
374
https://csmb.hu-berlin.de/wp-content/plugins/zotpress/
%7B%22status%22%3A%22success%22%2C%22updateneeded%22%3Afalse%2C%22instance%22%3Afalse%2C%22meta%22%3A%7B%22request_last%22%3A50%2C%22request_next%22%3A50%2C%22used_cache%22%3Atrue%7D%2C%22data%22%3A%5B%7B%22key%22%3A%22CNEMY7KL%22%2C%22library%22%3A%7B%22id%22%3A11840969%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Lvov%20et%20al.%22%2C%22parsedDate%22%3A%222023-12-29%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3ELvov%2C%20A.%20G.%2C%20Klimenko%2C%20L.%20S.%2C%20Bykov%2C%20V.%20N.%2C%20%26amp%3B%20Hecht%2C%20S.%20%282023%29.%20Revisiting%20Peri%26%23×2010%3BAryloxyquinones%3A%20From%20a%20Forgotten%20Photochromic%20System%20to%20a%20Promising%20Tool%20for%20Emerging%20Applications.%20%3Ci%3EChemistry%20%26%23×2013%3B%20A%20European%20Journal%3C%5C%2Fi%3E%2C%20e202303654.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1002%5C%2Fchem.202303654%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1002%5C%2Fchem.202303654%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Revisiting%20Peri%5Cu2010Aryloxyquinones%3A%20From%20a%20Forgotten%20Photochromic%20System%20to%20a%20Promising%20Tool%20for%20Emerging%20Applications%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Andrey%20G.%22%2C%22lastName%22%3A%22Lvov%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Lyubov%20S.%22%2C%22lastName%22%3A%22Klimenko%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Vasily%20N.%22%2C%22lastName%22%3A%22Bykov%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Stefan%22%2C%22lastName%22%3A%22Hecht%22%7D%5D%2C%22abstractNote%22%3A%22Abstract%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20Emerging%20applications%20of%20photochromic%20compounds%20demand%20new%20molecular%20designs%20that%20can%20be%20inspired%20by%20some%20long%5Cu2010known%20yet%20currently%20forgotten%20classes%20of%20photoswitches.%20In%20the%20present%20review%2C%20we%20remind%20the%20community%20about%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20Peri%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu2010AryloxyQuinones%20%28PAQs%29%20and%20their%20unique%20photoswitching%20behavior%20originally%20discovered%20more%20than%2050%5Cu2005years%20ago.%20At%20the%20heart%20of%20this%20phenomenon%20is%20the%20light%5Cu2010induced%20migration%20of%20an%20aromatic%20moiety%20%28arylotropy%29%20in%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20peri%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu2010aryloxy%5Cu2010substituted%20quinones%20resulting%20in%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20ana%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu2010quinones.%20PAQs%20feature%20absorbance%20of%20both%20isomers%20in%20the%20visible%20spectral%20region%2C%20photochromism%20in%20the%20amorphous%20and%20crystalline%20state%2C%20and%20thermal%20stability%20of%20the%20photogenerated%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20ana%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu2010isomer.%20Particularly%20noticeable%20is%20the%20high%20sensitivity%20of%20the%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20ana%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu2010isomer%20towards%20nucleophiles%20in%20solution.%20In%20addition%20to%20the%20mechanism%20of%20molecular%20photochromism%20and%20the%20underlaying%20structure%5Cu2010switch%20relationships%2C%20we%20analyze%20potential%20applications%20and%20prospects%20of%20aryloxyquinones%20in%20optically%20switchable%20materials%20and%20devices.%20Due%20to%20their%20ability%20to%20efficiently%20photoswitch%20in%20the%20solid%20state%2C%20PAQs%20are%20indeed%20attractive%20candidates%20for%20such%20materials%20and%20devices%2C%20including%20electronics%20%28optically%20controllable%20circuits%2C%20switches%2C%20transistors%2C%20memories%2C%20and%20displays%29%2C%20porous%20crystalline%20materials%2C%20crystalline%20actuators%2C%20photoactivated%20sensors%2C%20and%20many%20more.%20This%20review%20is%20intended%20to%20serve%20as%20a%20guide%20for%20researchers%20who%20wish%20to%20use%20photoswitchable%20PAQs%20in%20the%20development%20of%20new%20photocontrollable%20materials%2C%20devices%2C%20and%20processes.%22%2C%22date%22%3A%222023-12-29%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1002%5C%2Fchem.202303654%22%2C%22ISSN%22%3A%220947-6539%2C%201521-3765%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fchemistry-europe.onlinelibrary.wiley.com%5C%2Fdoi%5C%2F10.1002%5C%2Fchem.202303654%22%2C%22collections%22%3A%5B%227WAEICCJ%22%5D%2C%22dateModified%22%3A%222024-01-24T11%3A10%3A53Z%22%7D%7D%2C%7B%22key%22%3A%223QXCDSYE%22%2C%22library%22%3A%7B%22id%22%3A11840969%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Zorn%20Morales%20et%20al.%22%2C%22parsedDate%22%3A%222023-12-20%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EZorn%20Morales%2C%20N.%2C%20Severin%2C%20N.%2C%20Rabe%2C%20J.%20P.%2C%20Kirstein%2C%20S.%2C%20List%26%23×2010%3BKratochvil%2C%20E.%2C%20%26amp%3B%20Blumstengel%2C%20S.%20%282023%29.%20Resonance%20Energy%20Transfer%20from%20Monolayer%20WS%3Csub%3E2%3C%5C%2Fsub%3E%20to%20Organic%20Dye%20Molecules%3A%20Conversion%20of%20Faint%20Visible%26%23×2010%3BRed%20into%20Bright%20Near%26%23×2010%3BInfrared%20Luminescence.%20%3Ci%3EAdvanced%20Optical%20Materials%3C%5C%2Fi%3E%2C%20%3Ci%3E11%3C%5C%2Fi%3E%2824%29%2C%202301057.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1002%5C%2Fadom.202301057%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1002%5C%2Fadom.202301057%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Resonance%20Energy%20Transfer%20from%20Monolayer%20WS%3Csub%3E2%3C%5C%2Fsub%3E%20to%20Organic%20Dye%20Molecules%3A%20Conversion%20of%20Faint%20Visible%5Cu2010Red%20into%20Bright%20Near%5Cu2010Infrared%20Luminescence%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Nicolas%22%2C%22lastName%22%3A%22Zorn%20Morales%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Nikolai%22%2C%22lastName%22%3A%22Severin%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22J%5Cu00fcrgen%20P.%22%2C%22lastName%22%3A%22Rabe%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Stefan%22%2C%22lastName%22%3A%22Kirstein%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Emil%22%2C%22lastName%22%3A%22List%5Cu2010Kratochvil%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Sylke%22%2C%22lastName%22%3A%22Blumstengel%22%7D%5D%2C%22abstractNote%22%3A%22Abstract%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20The%20synergetic%20combination%20of%20transition%20metal%20dichalcogenides%20%28TMDCs%29%20with%20organic%20dye%20molecules%20in%20functional%20heterostructures%20is%20promising%20for%20various%20optoelectronic%20applications.%20Here%20resonance%20energy%20transfer%20%28RET%29%20from%20a%20red%5Cu2010emitting%20WS%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%202%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20monolayer%20%281L%5Cu2010WS%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%202%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%29%20to%20a%20layer%20of%20near%5Cu2010infrared%20%28NIR%29%20emitting%20organic%20dye%20molecules%20is%20demonstrated.%20It%20is%20found%20that%20the%20total%20photoluminescence%20%28PL%29%20yield%20of%20the%20heterostructures%20is%20up%20to%20a%20factor%20of%20eight%20higher%20as%20compared%20to%20the%20PL%20yield%20of%20pristine%201L%5Cu2010WS%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%202%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20.%20This%20is%20attributed%20to%20the%20efficient%20conversion%20of%20the%20mostly%20non%5Cu2010radiative%20excitons%20in%201L%5Cu2010WS%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%202%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20into%20radiative%20excitons%20in%20the%20dye%20layer.%20A%20type%5Cu2010I%20energy%20level%20alignment%20of%20the%201L%5Cu2010WS%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%202%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5C%2Fdye%20interface%20assures%20the%20emission%20of%20bright%20PL.%20From%20excitation%20density%5Cu2010dependent%20PL%20experiments%2C%20it%20is%20concluded%20that%20RET%20prevails%20against%20defect%5Cu2010assisted%20non%5Cu2010radiative%20recombination%20as%20well%20as%20Auger%5Cu2010type%20exciton%5Cu2010exciton%20annihilation%20in%201L%5Cu2010WS%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%202%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20.%20The%20work%20paves%20the%20way%20for%20employing%20organic%20dye%20molecules%20in%20heterostructures%20with%20TMDCs%20in%20nanoscale%20light%5Cu2010emitting%20devices%20with%20improved%20efficiency%20and%20tunable%20color.%22%2C%22date%22%3A%222023-12-20%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1002%5C%2Fadom.202301057%22%2C%22ISSN%22%3A%222195-1071%2C%202195-1071%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fonlinelibrary.wiley.com%5C%2Fdoi%5C%2F10.1002%5C%2Fadom.202301057%22%2C%22collections%22%3A%5B%227WAEICCJ%22%5D%2C%22dateModified%22%3A%222024-01-24T12%3A50%3A35Z%22%7D%7D%2C%7B%22key%22%3A%22JJDPEY73%22%2C%22library%22%3A%7B%22id%22%3A11840969%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Vona%20et%20al.%22%2C%22parsedDate%22%3A%222023-12-20%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EVona%2C%20C.%2C%20Lubeck%2C%20S.%2C%20Kleine%2C%20H.%2C%20Gulans%2C%20A.%2C%20%26amp%3B%20Draxl%2C%20C.%20%282023%29.%20Accurate%20and%20efficient%20treatment%20of%20spin-orbit%20coupling%20via%20second%20variation%20employing%20local%20orbitals.%20%3Ci%3EPhysical%20Review%20B%3C%5C%2Fi%3E%2C%20%3Ci%3E108%3C%5C%2Fi%3E%2823%29%2C%20235161.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1103%5C%2FPhysRevB.108.235161%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1103%5C%2FPhysRevB.108.235161%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Accurate%20and%20efficient%20treatment%20of%20spin-orbit%20coupling%20via%20second%20variation%20employing%20local%20orbitals%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Cecilia%22%2C%22lastName%22%3A%22Vona%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Sven%22%2C%22lastName%22%3A%22Lubeck%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Hannah%22%2C%22lastName%22%3A%22Kleine%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Andris%22%2C%22lastName%22%3A%22Gulans%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Claudia%22%2C%22lastName%22%3A%22Draxl%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%222023-12-20%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1103%5C%2FPhysRevB.108.235161%22%2C%22ISSN%22%3A%222469-9950%2C%202469-9969%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Flink.aps.org%5C%2Fdoi%5C%2F10.1103%5C%2FPhysRevB.108.235161%22%2C%22collections%22%3A%5B%227WAEICCJ%22%5D%2C%22dateModified%22%3A%222024-01-24T11%3A03%3A01Z%22%7D%7D%2C%7B%22key%22%3A%22VTDJH9EF%22%2C%22library%22%3A%7B%22id%22%3A11840969%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Yan%20et%20al.%22%2C%22parsedDate%22%3A%222023-12-10%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EYan%2C%20S.%2C%20Chen%2C%20X.%2C%20Li%2C%20W.%2C%20Zhong%2C%20M.%2C%20Xu%2C%20J.%2C%20Xu%2C%20M.%2C%20Wang%2C%20C.%2C%20Pinna%2C%20N.%2C%20%26amp%3B%20Lu%2C%20X.%20%282023%29.%20Highly%20Active%20and%20Stable%20Alkaline%20Hydrogen%20Evolution%20Electrocatalyst%20Based%20on%20Ir%26%23×2010%3BIncorporated%20Partially%20Oxidized%20Ru%20Aerogel%20under%20Industrial%26%23×2010%3BLevel%20Current%20Density.%20%3Ci%3EAdvanced%20Science%3C%5C%2Fi%3E%2C%202307061.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1002%5C%2Fadvs.202307061%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1002%5C%2Fadvs.202307061%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Highly%20Active%20and%20Stable%20Alkaline%20Hydrogen%20Evolution%20Electrocatalyst%20Based%20on%20Ir%5Cu2010Incorporated%20Partially%20Oxidized%20Ru%20Aerogel%20under%20Industrial%5Cu2010Level%20Current%20Density%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Su%22%2C%22lastName%22%3A%22Yan%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Xiaojie%22%2C%22lastName%22%3A%22Chen%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Weimo%22%2C%22lastName%22%3A%22Li%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Mengxiao%22%2C%22lastName%22%3A%22Zhong%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jiaqi%22%2C%22lastName%22%3A%22Xu%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Meijiao%22%2C%22lastName%22%3A%22Xu%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Ce%22%2C%22lastName%22%3A%22Wang%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Nicola%22%2C%22lastName%22%3A%22Pinna%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Xiaofeng%22%2C%22lastName%22%3A%22Lu%22%7D%5D%2C%22abstractNote%22%3A%22Abstract%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20The%20realization%20of%20large%5Cu2010scale%20industrial%20application%20of%20alkaline%20water%20electrolysis%20for%20hydrogen%20generation%20is%20severely%20hampered%20by%20the%20cost%20of%20electricity.%20Therefore%2C%20it%20is%20currently%20necessary%20to%20synthesize%20highly%20efficient%20electrocatalysts%20with%20excellent%20stability%20and%20low%20overpotential%20under%20an%20industrial%5Cu2010level%20current%20density.%20Herein%2C%20Ir%5Cu2010incorporated%20in%20partially%20oxidized%20Ru%20aerogel%20has%20been%20designed%20and%20synthesized%20via%20a%20simple%20in%20situ%20reduction%20strategy%20and%20subsequent%20oxidation%20process.%20The%20electrochemical%20measurements%20demonstrate%20that%20the%20optimized%20Ru%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%2098%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20Ir%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%202%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu2010350%20electrocatalyst%20exhibits%20outstanding%20hydrogen%20evolution%20reaction%20%28HER%29%20performance%20in%20an%20alkaline%20environment%20%281%5Cu00a0M%20KOH%29.%20Especially%2C%20at%20the%20large%20current%20density%20of%201000%5Cu00a0mA%5Cu00a0cm%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu22122%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%2C%20the%20overpotential%20is%20as%20low%20as%20121%5Cu00a0mV%2C%20far%20exceeding%20the%20benchmark%20Pt%5C%2FC%20catalyst.%20Moreover%2C%20the%20Ru%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%2098%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20Ir%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%202%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu2010350%20catalyst%20also%20displays%20excellent%20stability%20over%201500%5Cu00a0h%20at%201000%5Cu00a0mA%5Cu00a0cm%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu22122%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%2C%20denoting%20its%20industrial%20applicability.%20This%20work%20provides%20an%20efficient%20route%20for%20developing%20highly%20active%20and%20ultra%5Cu2010stable%20electrocatalysts%20for%20hydrogen%20generation%20under%20industrial%5Cu2010level%20current%20density.%22%2C%22date%22%3A%222023-12-10%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1002%5C%2Fadvs.202307061%22%2C%22ISSN%22%3A%222198-3844%2C%202198-3844%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fonlinelibrary.wiley.com%5C%2Fdoi%5C%2F10.1002%5C%2Fadvs.202307061%22%2C%22collections%22%3A%5B%227WAEICCJ%22%5D%2C%22dateModified%22%3A%222024-01-24T12%3A38%3A07Z%22%7D%7D%2C%7B%22key%22%3A%22XYPYMJMW%22%2C%22library%22%3A%7B%22id%22%3A11840969%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Beyranvand%20et%20al.%22%2C%22parsedDate%22%3A%222023-12-06%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EBeyranvand%2C%20F.%2C%20Khosravi%2C%20A.%2C%20Zabihi%2C%20F.%2C%20Nemati%2C%20M.%2C%20Gholami%2C%20M.%20F.%2C%20Tavakol%2C%20M.%2C%20Beyranvand%2C%20S.%2C%20Satari%2C%20S.%2C%20Rabe%2C%20J.%20P.%2C%20Salimi%2C%20A.%2C%20Cheng%2C%20C.%2C%20%26amp%3B%20Adeli%2C%20M.%20%282023%29.%20Synthesis%20of%20Chiral%20Triazine%20Frameworks%20for%20Enantiodiscrimination.%20%3Ci%3EACS%20Applied%20Materials%20%26amp%3B%20Interfaces%3C%5C%2Fi%3E%2C%20%3Ci%3E15%3C%5C%2Fi%3E%2848%29%2C%2056213%26%23×2013%3B56222.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1021%5C%2Facsami.3c16659%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1021%5C%2Facsami.3c16659%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Synthesis%20of%20Chiral%20Triazine%20Frameworks%20for%20Enantiodiscrimination%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Fatemeh%22%2C%22lastName%22%3A%22Beyranvand%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Armaghan%22%2C%22lastName%22%3A%22Khosravi%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Fatemeh%22%2C%22lastName%22%3A%22Zabihi%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Mohammad%22%2C%22lastName%22%3A%22Nemati%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Mohammad%20Fardin%22%2C%22lastName%22%3A%22Gholami%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Mahdi%22%2C%22lastName%22%3A%22Tavakol%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Siamak%22%2C%22lastName%22%3A%22Beyranvand%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Shabnam%22%2C%22lastName%22%3A%22Satari%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22J%5Cu00fcrgen%20P.%22%2C%22lastName%22%3A%22Rabe%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Abdollah%22%2C%22lastName%22%3A%22Salimi%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Chong%22%2C%22lastName%22%3A%22Cheng%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Mohsen%22%2C%22lastName%22%3A%22Adeli%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%222023-12-06%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1021%5C%2Facsami.3c16659%22%2C%22ISSN%22%3A%221944-8244%2C%201944-8252%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fpubs.acs.org%5C%2Fdoi%5C%2F10.1021%5C%2Facsami.3c16659%22%2C%22collections%22%3A%5B%227WAEICCJ%22%5D%2C%22dateModified%22%3A%222024-01-24T12%3A49%3A58Z%22%7D%7D%2C%7B%22key%22%3A%2254P9BMYH%22%2C%22library%22%3A%7B%22id%22%3A11840969%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22H%5Cu00fcbner%20et%20al.%22%2C%22parsedDate%22%3A%222023-12-04%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EH%26%23xFC%3Bbner%2C%20A.%2C%20Rigamonti%2C%20S.%2C%20%26amp%3B%20Draxl%2C%20C.%20%282023%29.%20Gauge%20invariance%20of%20the%20thermal%20conductivity%20in%20the%20quantum%20regime.%20%3Ci%3EPhysical%20Review%20B%3C%5C%2Fi%3E%2C%20%3Ci%3E108%3C%5C%2Fi%3E%2824%29%2C%20245201.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1103%5C%2FPhysRevB.108.245201%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1103%5C%2FPhysRevB.108.245201%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Gauge%20invariance%20of%20the%20thermal%20conductivity%20in%20the%20quantum%20regime%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Axel%22%2C%22lastName%22%3A%22H%5Cu00fcbner%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Santiago%22%2C%22lastName%22%3A%22Rigamonti%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Claudia%22%2C%22lastName%22%3A%22Draxl%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%222023-12-4%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1103%5C%2FPhysRevB.108.245201%22%2C%22ISSN%22%3A%222469-9950%2C%202469-9969%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Flink.aps.org%5C%2Fdoi%5C%2F10.1103%5C%2FPhysRevB.108.245201%22%2C%22collections%22%3A%5B%227WAEICCJ%22%5D%2C%22dateModified%22%3A%222024-01-24T11%3A02%3A22Z%22%7D%7D%2C%7B%22key%22%3A%22VAG2HWVY%22%2C%22library%22%3A%7B%22id%22%3A11840969%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Zu%20et%20al.%22%2C%22parsedDate%22%3A%222023-12-04%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EZu%2C%20F.%2C%20Shin%2C%20D.%2C%20Gutierrez%26%23×2010%3BPartida%2C%20E.%2C%20Stolterfoht%2C%20M.%2C%20Amsalem%2C%20P.%2C%20%26amp%3B%20Koch%2C%20N.%20%282023%29.%20Charge%20Selective%20Contacts%20to%20Metal%20Halide%20Perovskites%20Studied%20with%20Photoelectron%20Spectroscopy%3A%20X%26%23×2010%3BRay%2C%20Ultraviolet%2C%20and%20Visible%20Light%20Induced%20Energy%20Level%20Realignment.%20%3Ci%3EAdvanced%20Materials%20Interfaces%3C%5C%2Fi%3E%2C%20%3Ci%3E10%3C%5C%2Fi%3E%2834%29%2C%202300413.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1002%5C%2Fadmi.202300413%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1002%5C%2Fadmi.202300413%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Charge%20Selective%20Contacts%20to%20Metal%20Halide%20Perovskites%20Studied%20with%20Photoelectron%20Spectroscopy%3A%20X%5Cu2010Ray%2C%20Ultraviolet%2C%20and%20Visible%20Light%20Induced%20Energy%20Level%20Realignment%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Fengshuo%22%2C%22lastName%22%3A%22Zu%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Dongguen%22%2C%22lastName%22%3A%22Shin%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Emilio%22%2C%22lastName%22%3A%22Gutierrez%5Cu2010Partida%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Martin%22%2C%22lastName%22%3A%22Stolterfoht%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Patrick%22%2C%22lastName%22%3A%22Amsalem%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Norbert%22%2C%22lastName%22%3A%22Koch%22%7D%5D%2C%22abstractNote%22%3A%22Abstract%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20The%20electronic%20properties%20of%20metal%20halide%20perovskites%20%28MHPs%29%20are%20crucial%20for%20achieving%20the%20full%20potential%20of%20MHPs%5Cu2010based%20optoelectronic%20devices%2C%20and%20they%20are%20extensively%20studied%20by%20photoelectron%20spectroscopy%20%28PES%29.%20However%2C%20there%20are%20numerous%20complexities%20during%20PES%20measurements%2C%20which%20can%20result%20in%20inconsistent%20experimental%20data%20or%20even%20misinterpretation%20of%20results.%20Here%2C%20it%20is%20demonstrated%20that%20in%20the%20presence%20of%20charge%20selective%20junctions%20with%20MHPs%2C%20significant%20electronic%20energy%20level%20realignment%20can%20occur%20during%20PES%20measurements%20due%20to%20the%20sample%20excitation%20with%20high%5Cu2010energy%20photons%20used%20in%20PES%2C%20amounting%20up%20to%20over%200.8%5Cu00a0eV%20in%20the%20present%20case.%20This%20is%20caused%20by%20unbalanced%20charge%20carrier%20accumulation%20within%20the%20perovskite%20due%20to%20the%20charge%5Cu2010selective%20interface.%20X%5Cu2010ray%20photoelectron%20spectroscopy%20further%20reveals%20that%20photoexcitation%20due%20to%20bremsstrahlung%2C%20as%20produced%20in%20commonly%20employed%20twin%5Cu2010anode%20lab%5Cu2010sources%2C%20can%20readily%20produce%20sizable%20photoinduced%20shifts%20of%20core%20levels%20of%20MHPs%20films%2C%20whereas%20monochromatized%20X%5Cu2010ray%20lab%5Cu2010sources%20%28irradiation%20flux%20reduced%20by%20%3E50%20times%20by%20eliminating%20the%20bremsstrahlung%29%20induce%20negligible%20shifts%20within%20the%20range%20of%20presently%20applied%20anode%20powers.%20The%20data%20and%20measurement%20conditions%20presented%20here%20are%20intended%20to%20enable%20others%20to%20obtain%20reliable%20MHP%20electronic%20property%20information%20from%20PES%20measurements.%22%2C%22date%22%3A%222023-12-04%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1002%5C%2Fadmi.202300413%22%2C%22ISSN%22%3A%222196-7350%2C%202196-7350%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fonlinelibrary.wiley.com%5C%2Fdoi%5C%2F10.1002%5C%2Fadmi.202300413%22%2C%22collections%22%3A%5B%227WAEICCJ%22%5D%2C%22dateModified%22%3A%222024-01-24T11%3A44%3A59Z%22%7D%7D%2C%7B%22key%22%3A%22TS9FE8LW%22%2C%22library%22%3A%7B%22id%22%3A11840969%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22St%5Cu00fcwe%20et%20al.%22%2C%22parsedDate%22%3A%222023-12-03%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3ESt%26%23xFC%3Bwe%2C%20L.%2C%20Geiger%2C%20M.%2C%20R%26%23xF6%3Bllgen%2C%20F.%2C%20Heinze%2C%20T.%2C%20Reuter%2C%20M.%2C%20Wessling%2C%20M.%2C%20Hecht%2C%20S.%2C%20%26amp%3B%20Linkhorst%2C%20J.%20%282023%29.%20Continuous%20Volumetric%203D%20Printing%3A%20Xolography%20in%20Flow.%20%3Ci%3EAdvanced%20Materials%3C%5C%2Fi%3E%2C%202306716.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1002%5C%2Fadma.202306716%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1002%5C%2Fadma.202306716%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Continuous%20Volumetric%203D%20Printing%3A%20Xolography%20in%20Flow%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Lucas%22%2C%22lastName%22%3A%22St%5Cu00fcwe%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Matthias%22%2C%22lastName%22%3A%22Geiger%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Franz%22%2C%22lastName%22%3A%22R%5Cu00f6llgen%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Thorben%22%2C%22lastName%22%3A%22Heinze%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Marcus%22%2C%22lastName%22%3A%22Reuter%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Matthias%22%2C%22lastName%22%3A%22Wessling%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Stefan%22%2C%22lastName%22%3A%22Hecht%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22John%22%2C%22lastName%22%3A%22Linkhorst%22%7D%5D%2C%22abstractNote%22%3A%22Abstract%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20Additive%20manufacturing%20techniques%20continue%20to%20improve%20in%20resolution%2C%20geometrical%20freedom%2C%20and%20production%20rates%2C%20expanding%20their%20application%20range%20in%20research%20and%20industry.%20Most%20established%20techniques%2C%20however%2C%20are%20based%20on%20layer%5Cu2010by%5Cu2010layer%20polymerization%20processes%2C%20leading%20to%20an%20inherent%20trade%5Cu2010off%20between%20resolution%20and%20printing%20speed.%20Volumetric%203D%20printing%20enables%20the%20polymerization%20of%20freely%20defined%20volumes%20allowing%20the%20fabrication%20of%20complex%20geometries%20at%20drastically%20increased%20production%20rates%20and%20high%20resolutions%2C%20marking%20the%20next%20chapter%20in%20light%5Cu2010based%20additive%20manufacturing.%20This%20work%20advances%20the%20volumetric%203D%20printing%20technique%20xolography%20to%20a%20continuous%20process.%20Dual%5Cu2010color%20photopolymerization%20is%20performed%20in%20a%20continuously%20flowing%20resin%2C%20inside%20a%20tailored%20flow%20cell.%20Supported%20by%20simulations%2C%20the%20flow%20profile%20in%20the%20printing%20area%20is%20flattened%2C%20and%20resin%20velocities%20at%20the%20flow%20cell%20walls%20are%20increased%20to%20minimize%20unwanted%20polymerization%20via%20laser%20sheet%5Cu2010induced%20curing.%20Various%20objects%20are%20printed%20continuously%20and%20true%20to%20shape%20with%20smooth%20surfaces.%20Parallel%20object%20printing%20paves%20the%20way%20for%20up%5Cu2010scaling%20the%20continuous%20production%2C%20currently%20reaching%20production%20rates%20up%20to%201.75%5Cu00a0mm%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%203%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu2009s%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu22121%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20for%20the%20presented%20flow%20cell.%20Xolography%20in%20flow%20provides%20a%20new%20opportunity%20for%20scaling%20up%20volumetric%203D%20printing%20with%20the%20potential%20to%20resolve%20the%20trade%5Cu2010off%20between%20high%20production%20rates%20and%20high%20resolution%20in%20light%5Cu2010based%20additive%20manufacturing.%22%2C%22date%22%3A%222023-12-03%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1002%5C%2Fadma.202306716%22%2C%22ISSN%22%3A%220935-9648%2C%201521-4095%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fonlinelibrary.wiley.com%5C%2Fdoi%5C%2F10.1002%5C%2Fadma.202306716%22%2C%22collections%22%3A%5B%227WAEICCJ%22%5D%2C%22dateModified%22%3A%222024-01-24T11%3A09%3A42Z%22%7D%7D%2C%7B%22key%22%3A%225G9HB7R9%22%2C%22library%22%3A%7B%22id%22%3A11840969%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Kim%20et%20al.%22%2C%22parsedDate%22%3A%222023-12-01%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EKim%2C%20K.%2C%20Kang%2C%20D.%2C%20Blumstengel%2C%20S.%2C%20Morales%2C%20N.%20Z.%2C%20List-Kratochvil%2C%20E.%20J.%20W.%2C%20Cho%2C%20S.%20W.%2C%20Lee%2C%20H.%2C%20Park%2C%20S.%2C%20%26amp%3B%20Yi%2C%20Y.%20%282023%29.%20Enhancing%20photostability%20of%202D%20Ruddlesden%26%23×2013%3BPopper%20perovskite%20via%20molecular%20acceptor%20passivation%20of%20metallic%20lead%20defects.%20%3Ci%3EApplied%20Physics%20Reviews%3C%5C%2Fi%3E%2C%20%3Ci%3E10%3C%5C%2Fi%3E%284%29%2C%20041411.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1063%5C%2F5.0157930%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1063%5C%2F5.0157930%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Enhancing%20photostability%20of%202D%20Ruddlesden%5Cu2013Popper%20perovskite%20via%20molecular%20acceptor%20passivation%20of%20metallic%20lead%20defects%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Kitae%22%2C%22lastName%22%3A%22Kim%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Donghee%22%2C%22lastName%22%3A%22Kang%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Sylke%22%2C%22lastName%22%3A%22Blumstengel%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Nicolas%20Zorn%22%2C%22lastName%22%3A%22Morales%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Emil%20J.%20W.%22%2C%22lastName%22%3A%22List-Kratochvil%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Sang%20Wan%22%2C%22lastName%22%3A%22Cho%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Hyunbok%22%2C%22lastName%22%3A%22Lee%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Soohyung%22%2C%22lastName%22%3A%22Park%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Yeonjin%22%2C%22lastName%22%3A%22Yi%22%7D%5D%2C%22abstractNote%22%3A%22Two-dimensional%20%282D%29%20Ruddlesden%5Cu2013Popper%20%28RP%29%20perovskites%20hold%20great%20potential%20for%20novel%20optoelectronic%20applications.%20However%2C%20their%20unconventional%20optoelectronic%20properties%20are%20often%20compromised%20by%20a%20vulnerability%20to%20light%20irradiation%2C%20which%20leads%20to%20the%20formation%20of%20metallic%20Pb%20%28Pb0%29%20defects.%20This%20study%20investigates%20the%20passivation%20mechanism%20of%20these%20Pb0%20defects%20in%20phenylethylammonium%20lead%20iodide%20%28PEA2PbI4%29%20using%20a%20strong%20molecular%20acceptor%2C%202%2C2%5Cu2032-%28perfluoronaphthalene-2%2C%206-diylidene%29%20dimalononitrile%20%28F6-TCNNQ%29.%20In%20situ%20x-ray%20photoelectron%20spectroscopy%20results%20demonstrate%20that%20F6-TCNNQ%20effectively%20removes%20the%20light-induced%20Pb0%20states%2C%20leading%20to%20the%20recovery%20of%20photoluminescence%20intensity%20in%20photodegraded%20PEA2PbI4%20samples%20and%20significantly%20improving%20the%20photostability%20of%20pristine%20PEA2PbI4.%20F6-TCNNQ%20protects%20the%20terrace%20edge%20of%20PEA2PbI4%2C%20which%20is%20the%20site%20of%20initial%20degradation%2C%20as%20evidenced%20by%20atomic%20force%20microscopy%20and%20scanning%20electron%20microscopy%20analyses.%20In%20situ%20ultraviolet%20photoelectron%20spectroscopy%20measurements%20confirm%20substantial%20electron%20transfer%20from%20Pb0%20to%20F6-TCNNQ%2C%20causing%20the%20oxidation%20of%20Pb0%20to%20Pb2%2B.%20Furthermore%2C%20the%20staggered%20energy%20level%20alignment%20prevents%20electron%20transfer%20from%20the%20valence%20band%20maximum%20of%20PEA2PbI4%20to%20the%20lowest%20unoccupied%20molecular%20orbital%20of%20F6-TCNNQ%2C%20thereby%20preserving%20the%20pristine%20electronic%20structure%20of%20PEA2PbI4.%20These%20findings%20provide%20new%20insights%20into%20defect%20passivation%20in%202D%20RP%20perovskites%20and%20offer%20a%20design%20strategy%20for%20highly%20stable%20optoelectronic%20devices.%22%2C%22date%22%3A%222023-12-01%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1063%5C%2F5.0157930%22%2C%22ISSN%22%3A%221931-9401%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fpubs.aip.org%5C%2Fapr%5C%2Farticle%5C%2F10%5C%2F4%5C%2F041411%5C%2F2923237%5C%2FEnhancing-photostability-of-2D-Ruddlesden-Popper%22%2C%22collections%22%3A%5B%227WAEICCJ%22%5D%2C%22dateModified%22%3A%222024-01-24T12%3A32%3A18Z%22%7D%7D%2C%7B%22key%22%3A%22CP5N98KA%22%2C%22library%22%3A%7B%22id%22%3A11840969%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Aru%20et%20al.%22%2C%22parsedDate%22%3A%222023-12-01%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EAru%2C%20J.%2C%20Larkum%2C%20M.%20E.%2C%20%26amp%3B%20Shine%2C%20J.%20M.%20%282023%29.%20The%20feasibility%20of%20artificial%20consciousness%20through%20the%20lens%20of%20neuroscience.%20%3Ci%3ETrends%20in%20Neurosciences%3C%5C%2Fi%3E%2C%20%3Ci%3E46%3C%5C%2Fi%3E%2812%29%2C%201008%26%23×2013%3B1017.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1016%5C%2Fj.tins.2023.09.009%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1016%5C%2Fj.tins.2023.09.009%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22The%20feasibility%20of%20artificial%20consciousness%20through%20the%20lens%20of%20neuroscience%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jaan%22%2C%22lastName%22%3A%22Aru%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Matthew%20E.%22%2C%22lastName%22%3A%22Larkum%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22James%20M.%22%2C%22lastName%22%3A%22Shine%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%222023-12-01%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1016%5C%2Fj.tins.2023.09.009%22%2C%22ISSN%22%3A%2201662236%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Flinkinghub.elsevier.com%5C%2Fretrieve%5C%2Fpii%5C%2FS0166223623002278%22%2C%22collections%22%3A%5B%227WAEICCJ%22%5D%2C%22dateModified%22%3A%222024-01-24T11%3A59%3A48Z%22%7D%7D%2C%7B%22key%22%3A%22V7MWICYT%22%2C%22library%22%3A%7B%22id%22%3A11840969%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Skrodczky%20et%20al.%22%2C%22parsedDate%22%3A%222023-11-29%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3ESkrodczky%2C%20K.%2C%20Antunes%2C%20M.%20M.%2C%20Zhu%2C%20Q.%2C%20Valente%2C%20A.%20A.%2C%20Pinna%2C%20N.%2C%20%26amp%3B%20Russo%2C%20P.%20A.%20%282023%29.%20Single-Step%20Formation%20of%20Metal%20Oxide%20Nanostructures%20Wrapped%20in%20Mesoporous%20Silica%20and%20Silica%26%23×2013%3BNiobia%20Catalysts%20for%20the%20Condensation%20of%20Furfural%20with%20Acetone.%20%3Ci%3ENanomaterials%3C%5C%2Fi%3E%2C%20%3Ci%3E13%3C%5C%2Fi%3E%2823%29%2C%203046.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.3390%5C%2Fnano13233046%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.3390%5C%2Fnano13233046%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Single-Step%20Formation%20of%20Metal%20Oxide%20Nanostructures%20Wrapped%20in%20Mesoporous%20Silica%20and%20Silica%5Cu2013Niobia%20Catalysts%20for%20the%20Condensation%20of%20Furfural%20with%20Acetone%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Kai%22%2C%22lastName%22%3A%22Skrodczky%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Margarida%20M.%22%2C%22lastName%22%3A%22Antunes%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Qingjun%22%2C%22lastName%22%3A%22Zhu%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Anabela%20A.%22%2C%22lastName%22%3A%22Valente%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Nicola%22%2C%22lastName%22%3A%22Pinna%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Patr%5Cu00edcia%20A.%22%2C%22lastName%22%3A%22Russo%22%7D%5D%2C%22abstractNote%22%3A%22The%20integration%20of%20metal%20oxide%20nanomaterials%20with%20mesoporous%20silica%20is%20a%20promising%20approach%20to%20exploiting%20the%20advantages%20of%20both%20types%20of%20materials.%20Traditional%20synthesis%20methods%20typically%20require%20multiple%20steps.%20This%20work%20instead%20presents%20a%20fast%2C%20one-step%2C%20template-free%20method%20for%20the%20synthesis%20of%20metal%20oxides%20homogeneously%20dispersed%20within%20mesoporous%20silica%2C%20including%20oxides%20of%20W%2C%20Ti%2C%20Nb%2C%20Ta%2C%20Sn%2C%20and%20Mo.%20These%20composites%20have%20tunable%20metal%20oxide%20contents%2C%20large%20surface%20areas%2C%20and%20wide%20mesopores.%20The%20combination%20of%20Nb2O5%20nanoparticles%20%28NPs%29%20with%20SiO2%20results%20in%20an%20increased%20surface%20area%20and%20a%20larger%20number%20of%20acid%20sites%20compared%20to%20pure%20Nb2O5%20NPs.%20The%20surface%20texture%20and%20acidity%20of%20the%20silica%5Cu2013niobia%20composites%20can%20be%20tuned%20by%20adjusting%20the%20Nb%5C%2FSi%20molar%20ratio.%20Moreover%2C%20the%20silica%20provides%20protection%20to%20the%20niobia%20NPs%2C%20preventing%20sintering%20during%20thermal%20treatment%20at%20400%20%5Cu00b0C.%20The%20silica%5Cu2013niobia%20materials%20exhibit%20superior%20performance%20as%20catalysts%20in%20the%20aldol%20condensation%20of%20furfural%20%28Fur%29%20with%20acetone%20compared%20to%20pure%20niobia%2C%20leading%20to%20an%20up%20to%2062%25%20in%20product%20yield.%20Additionally%2C%20these%20catalysts%20show%20remarkable%20stability%2C%20retaining%20their%20performance%20over%20multiple%20runs.%20This%20work%20demonstrates%20the%20potential%20of%20the%20proposed%20synthesis%20approach%20for%20preparing%20more%20sustainable%2C%20high-performance%2C%20durable%2C%20and%20stable%20nanoscale%20metal%20oxide-based%20catalysts%20with%20a%20tunable%20composition%2C%20surface%20area%2C%20and%20active%20site%20density.%22%2C%22date%22%3A%222023-11-29%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.3390%5C%2Fnano13233046%22%2C%22ISSN%22%3A%222079-4991%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fwww.mdpi.com%5C%2F2079-4991%5C%2F13%5C%2F23%5C%2F3046%22%2C%22collections%22%3A%5B%227WAEICCJ%22%5D%2C%22dateModified%22%3A%222024-01-24T12%3A47%3A05Z%22%7D%7D%2C%7B%22key%22%3A%229UXBAS84%22%2C%22library%22%3A%7B%22id%22%3A11840969%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Ledderose%20et%20al.%22%2C%22parsedDate%22%3A%222023-11-27%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3ELedderose%2C%20J.%20M.%20T.%2C%20Zolnik%2C%20T.%20A.%2C%20Toumazou%2C%20M.%2C%20Trimbuch%2C%20T.%2C%20Rosenmund%2C%20C.%2C%20Eickholt%2C%20B.%20J.%2C%20Jaeger%2C%20D.%2C%20Larkum%2C%20M.%20E.%2C%20%26amp%3B%20Sachdev%2C%20R.%20N.%20S.%20%282023%29.%20Layer%201%20of%20somatosensory%20cortex%3A%20an%20important%20site%20for%20input%20to%20a%20tiny%20cortical%20compartment.%20%3Ci%3ECerebral%20Cortex%3C%5C%2Fi%3E%2C%20%3Ci%3E33%3C%5C%2Fi%3E%2823%29%2C%2011354%26%23×2013%3B11372.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1093%5C%2Fcercor%5C%2Fbhad371%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1093%5C%2Fcercor%5C%2Fbhad371%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Layer%201%20of%20somatosensory%20cortex%3A%20an%20important%20site%20for%20input%20to%20a%20tiny%20cortical%20compartment%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Julia%20M%20T%22%2C%22lastName%22%3A%22Ledderose%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Timothy%20A%22%2C%22lastName%22%3A%22Zolnik%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Maria%22%2C%22lastName%22%3A%22Toumazou%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Thorsten%22%2C%22lastName%22%3A%22Trimbuch%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Christian%22%2C%22lastName%22%3A%22Rosenmund%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Britta%20J%22%2C%22lastName%22%3A%22Eickholt%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Dieter%22%2C%22lastName%22%3A%22Jaeger%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Matthew%20E%22%2C%22lastName%22%3A%22Larkum%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Robert%20N%20S%22%2C%22lastName%22%3A%22Sachdev%22%7D%5D%2C%22abstractNote%22%3A%22Abstract%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20Neocortical%20layer%201%20has%20been%20proposed%20to%20be%20at%20the%20center%20for%20top-down%20and%20bottom-up%20integration.%20It%20is%20a%20locus%20for%20interactions%20between%20long-range%20inputs%2C%20layer%201%20interneurons%2C%20and%20apical%20tuft%20dendrites%20of%20pyramidal%20neurons.%20While%20input%20to%20layer%201%20has%20been%20studied%20intensively%2C%20the%20level%20and%20effect%20of%20input%20to%20this%20layer%20has%20still%20not%20been%20completely%20characterized.%20Here%20we%20examined%20the%20input%20to%20layer%201%20of%20mouse%20somatosensory%20cortex%20with%20retrograde%20tracing%20and%20optogenetics.%20Our%20assays%20reveal%20that%20local%20input%20to%20layer%201%20is%20predominantly%20from%20layers%202%5C%2F3%20and%205%20pyramidal%20neurons%20and%20interneurons%2C%20and%20that%20subtypes%20of%20local%20layers%205%20and%206b%20neurons%20project%20to%20layer%201%20with%20different%20probabilities.%20Long-range%20input%20from%20sensory-motor%20cortices%20to%20layer%201%20of%20somatosensory%20cortex%20arose%20predominantly%20from%20layers%202%5C%2F3%20neurons.%20Our%20optogenetic%20experiments%20showed%20that%20intra-telencephalic%20layer%205%20pyramidal%20neurons%20drive%20layer%201%20interneurons%20but%20have%20no%20effect%20locally%20on%20layer%205%20apical%20tuft%20dendrites.%20Dual%20retrograde%20tracing%20revealed%20that%20a%20fraction%20of%20local%20and%20long-range%20neurons%20was%20both%20presynaptic%20to%20layer%205%20neurons%20and%20projected%20to%20layer%201.%20Our%20work%20highlights%20the%20prominent%20role%20of%20local%20inputs%20to%20layer%201%20and%20shows%20the%20potential%20for%20complex%20interactions%20between%20long-range%20and%20local%20inputs%2C%20which%20are%20both%20in%20position%20to%20modify%20the%20output%20of%20somatosensory%20cortex.%22%2C%22date%22%3A%222023-11-27%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1093%5C%2Fcercor%5C%2Fbhad371%22%2C%22ISSN%22%3A%221047-3211%2C%201460-2199%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Facademic.oup.com%5C%2Fcercor%5C%2Farticle%5C%2F33%5C%2F23%5C%2F11354%5C%2F7320106%22%2C%22collections%22%3A%5B%227WAEICCJ%22%5D%2C%22dateModified%22%3A%222024-01-24T12%3A00%3A23Z%22%7D%7D%2C%7B%22key%22%3A%22PB2ZT3VV%22%2C%22library%22%3A%7B%22id%22%3A11840969%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Schultz%20et%20al.%22%2C%22parsedDate%22%3A%222023-11-22%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3ESchultz%2C%20C.%2C%20Fenske%2C%20M.%2C%20Dion-Bertrand%2C%20L.-I.%2C%20G%26%23xE9%3Blinas%2C%20G.%2C%20Marcet%2C%20S.%2C%20Dagar%2C%20J.%2C%20Bartelt%2C%20A.%2C%20Schlatmann%2C%20R.%2C%20Unger%2C%20E.%2C%20%26amp%3B%20Stegemann%2C%20B.%20%282023%29.%20Hyperspectral%20Photoluminescence%20Imaging%20for%20Spatially%20Resolved%20Determination%20of%20Electrical%20Parameters%20of%20Laser%26%23×2010%3BPatterned%20Perovskite%20Solar%20Cells.%20%3Ci%3ESolar%20RRL%3C%5C%2Fi%3E%2C%20%3Ci%3E7%3C%5C%2Fi%3E%2822%29%2C%202300538.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1002%5C%2Fsolr.202300538%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1002%5C%2Fsolr.202300538%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Hyperspectral%20Photoluminescence%20Imaging%20for%20Spatially%20Resolved%20Determination%20of%20Electrical%20Parameters%20of%20Laser%5Cu2010Patterned%20Perovskite%20Solar%20Cells%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Christof%22%2C%22lastName%22%3A%22Schultz%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Markus%22%2C%22lastName%22%3A%22Fenske%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Laura-Isabelle%22%2C%22lastName%22%3A%22Dion-Bertrand%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Guillaume%22%2C%22lastName%22%3A%22G%5Cu00e9linas%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22St%5Cu00e9phane%22%2C%22lastName%22%3A%22Marcet%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Janardan%22%2C%22lastName%22%3A%22Dagar%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Andreas%22%2C%22lastName%22%3A%22Bartelt%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Rutger%22%2C%22lastName%22%3A%22Schlatmann%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Eva%22%2C%22lastName%22%3A%22Unger%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Bert%22%2C%22lastName%22%3A%22Stegemann%22%7D%5D%2C%22abstractNote%22%3A%22Absolute%20calibrated%20hyperspectral%20photoluminescence%20%28PL%29%20imaging%20is%20utilized%20to%20access%2C%20in%20a%20simple%20and%20fast%20way%2C%20the%20spatial%20distribution%20of%20relevant%20solar%20cell%20parameters%20such%20as%20quasi%5Cu2010Fermi%20level%20splitting%2C%20optical%20diode%5Cu2009factor%2C%20Urbach%20energies%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20E%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20u%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%2C%20and%20shunt%20resistances%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20R%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20sh%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%2C%20without%20the%20need%20for%20electrical%20measurements.%20Since%20these%20metrics%20play%20a%20significant%20role%20in%20evaluating%20the%20process%20windows%20for%20electrical%20series%20interconnection%20by%20laser%20patterning%2C%20this%20approach%20is%20followed%20to%20systematically%20locate%20and%20quantify%20electrical%20losses%20that%20may%20occur%20as%20a%20result%20of%20the%20laser%5Cu2010patterning%20process%20for%20monolithic%20series%20interconnection.%20It%20is%20shown%20that%20both%20picosecond%20and%20nanosecond%20laser%20pulses%20can%20be%20used%20for%20successful%20series%20interconnection.%20In%20both%20cases%2C%20only%20minor%20lateral%20material%20alterations%20occur%2C%20localized%20in%20a%20few%20%5Cu03bcm%20wide%20region%20adjacent%20to%20the%20edges%20of%20the%20scribe%20lines.%20Furthermore%2C%20the%20acquisition%20and%20analysis%20of%20these%20hyperspectral%20PL%20datasets%20provide%20insights%20in%20the%20material%20removal%20process%2C%20from%20which%20it%20is%20concluded%20that%20the%20perovskite%20is%20rather%20resilient%20against%20the%20thermal%20impact%20of%20the%20laser.%22%2C%22date%22%3A%222023-11-22%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1002%5C%2Fsolr.202300538%22%2C%22ISSN%22%3A%222367-198X%2C%202367-198X%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fonlinelibrary.wiley.com%5C%2Fdoi%5C%2F10.1002%5C%2Fsolr.202300538%22%2C%22collections%22%3A%5B%227WAEICCJ%22%5D%2C%22dateModified%22%3A%222024-01-24T13%3A02%3A56Z%22%7D%7D%2C%7B%22key%22%3A%22EPFXAXQ9%22%2C%22library%22%3A%7B%22id%22%3A11840969%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Maslyanchuk%20et%20al.%22%2C%22parsedDate%22%3A%222023-11-17%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EMaslyanchuk%2C%20O.%2C%20Paramasivam%2C%20G.%2C%20Sarisozen%2C%20S.%2C%20Heuer%2C%20A.%2C%20Stolterfoht%2C%20M.%2C%20Neher%2C%20D.%2C%20Maticiuc%2C%20N.%2C%20Unger%2C%20E.%2C%20%26amp%3B%20Lang%2C%20F.%20%282023%29.%20Toward%20Understanding%20the%20Spectroscopic%20Performance%20and%20Charge%20Transport%20Mechanisms%20of%20Methylammonium%20Lead%20Tribromide%20Perovskite%20X-%20and%20%3Ci%3E%26%23x3B3%3B%3C%5C%2Fi%3E%20-Rays%20Detectors.%20%3Ci%3EIEEE%20Transactions%20on%20Nuclear%20Science%3C%5C%2Fi%3E%2C%20%3Ci%3E70%3C%5C%2Fi%3E%2812%29%2C%202659%26%23×2013%3B2667.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1109%5C%2FTNS.2023.3334561%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1109%5C%2FTNS.2023.3334561%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Toward%20Understanding%20the%20Spectroscopic%20Performance%20and%20Charge%20Transport%20Mechanisms%20of%20Methylammonium%20Lead%20Tribromide%20Perovskite%20X-%20and%20%3Ci%3E%5Cu03b3%3C%5C%2Fi%3E%20-Rays%20Detectors%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22O.%22%2C%22lastName%22%3A%22Maslyanchuk%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22G.%22%2C%22lastName%22%3A%22Paramasivam%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22S.%22%2C%22lastName%22%3A%22Sarisozen%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22A.%22%2C%22lastName%22%3A%22Heuer%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.%22%2C%22lastName%22%3A%22Stolterfoht%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22D.%22%2C%22lastName%22%3A%22Neher%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22N.%22%2C%22lastName%22%3A%22Maticiuc%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22E.%22%2C%22lastName%22%3A%22Unger%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22F.%22%2C%22lastName%22%3A%22Lang%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%222023-11-17%22%2C%22language%22%3A%22%22%2C%22DOI%22%3A%2210.1109%5C%2FTNS.2023.3334561%22%2C%22ISSN%22%3A%220018-9499%2C%201558-1578%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fieeexplore.ieee.org%5C%2Fdocument%5C%2F10322769%5C%2F%22%2C%22collections%22%3A%5B%227WAEICCJ%22%5D%2C%22dateModified%22%3A%222024-01-24T13%3A04%3A23Z%22%7D%7D%2C%7B%22key%22%3A%225L4WSRN4%22%2C%22library%22%3A%7B%22id%22%3A11840969%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Bertocchi%20et%20al.%22%2C%22parsedDate%22%3A%222023-11-17%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EBertocchi%2C%20I.%2C%20Rocha-Almeida%2C%20F.%2C%20Romero-Barrag%26%23xE1%3Bn%2C%20M.%20T.%2C%20Cambiaghi%2C%20M.%2C%20Carretero-Guill%26%23xE9%3Bn%2C%20A.%2C%20Botta%2C%20P.%2C%20Dogbevia%2C%20G.%20K.%2C%20Trevi%26%23xF1%3Bo%2C%20M.%2C%20Mele%2C%20P.%2C%20Oberto%2C%20A.%2C%20Larkum%2C%20M.%20E.%2C%20Gruart%2C%20A.%2C%20Sprengel%2C%20R.%2C%20Delgado-Garc%26%23xED%3Ba%2C%20J.%20M.%2C%20%26amp%3B%20Hasan%2C%20M.%20T.%20%282023%29.%20Pre-%20and%20postsynaptic%20N-methyl-D-aspartate%20receptors%20are%20required%20for%20sequential%20printing%20of%20fear%20memory%20engrams.%20%3Ci%3EIScience%3C%5C%2Fi%3E%2C%20%3Ci%3E26%3C%5C%2Fi%3E%2811%29%2C%20108050.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1016%5C%2Fj.isci.2023.108050%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1016%5C%2Fj.isci.2023.108050%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Pre-%20and%20postsynaptic%20N-methyl-D-aspartate%20receptors%20are%20required%20for%20sequential%20printing%20of%20fear%20memory%20engrams%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Ilaria%22%2C%22lastName%22%3A%22Bertocchi%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Florbela%22%2C%22lastName%22%3A%22Rocha-Almeida%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Mar%5Cu00eda%20Teresa%22%2C%22lastName%22%3A%22Romero-Barrag%5Cu00e1n%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Marco%22%2C%22lastName%22%3A%22Cambiaghi%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Alejandro%22%2C%22lastName%22%3A%22Carretero-Guill%5Cu00e9n%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Paolo%22%2C%22lastName%22%3A%22Botta%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Godwin%20K.%22%2C%22lastName%22%3A%22Dogbevia%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Mario%22%2C%22lastName%22%3A%22Trevi%5Cu00f1o%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Paolo%22%2C%22lastName%22%3A%22Mele%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Alessandra%22%2C%22lastName%22%3A%22Oberto%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Matthew%20E.%22%2C%22lastName%22%3A%22Larkum%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Agnes%22%2C%22lastName%22%3A%22Gruart%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Rolf%22%2C%22lastName%22%3A%22Sprengel%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jos%5Cu00e9%20Maria%22%2C%22lastName%22%3A%22Delgado-Garc%5Cu00eda%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Mazahir%20T.%22%2C%22lastName%22%3A%22Hasan%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%222023-11-17%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1016%5C%2Fj.isci.2023.108050%22%2C%22ISSN%22%3A%2225890042%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Flinkinghub.elsevier.com%5C%2Fretrieve%5C%2Fpii%5C%2FS2589004223021272%22%2C%22collections%22%3A%5B%227WAEICCJ%22%5D%2C%22dateModified%22%3A%222024-01-24T11%3A59%3A10Z%22%7D%7D%2C%7B%22key%22%3A%22AXC3NRD6%22%2C%22library%22%3A%7B%22id%22%3A11840969%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Triolo%20et%20al.%22%2C%22parsedDate%22%3A%222023-11-15%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3ETriolo%2C%20C.%2C%20Maisuradze%2C%20M.%2C%20Li%2C%20M.%2C%20Liu%2C%20Y.%2C%20Ponti%2C%20A.%2C%20Pagot%2C%20G.%2C%20Di%20Noto%2C%20V.%2C%20Aquilanti%2C%20G.%2C%20Pinna%2C%20N.%2C%20Giorgetti%2C%20M.%2C%20%26amp%3B%20Santangelo%2C%20S.%20%282023%29.%20Charge%20Storage%20Mechanism%20in%20Electrospun%20Spinel%26%23×2010%3BStructured%20High%26%23×2010%3BEntropy%20%28Mn%3Csub%3E0.2%3C%5C%2Fsub%3EFe%3Csub%3E0.2%3C%5C%2Fsub%3ECo%3Csub%3E0.2%3C%5C%2Fsub%3ENi%3Csub%3E0.2%3C%5C%2Fsub%3EZn%3Csub%3E0.2%3C%5C%2Fsub%3E%29%3Csub%3E3%3C%5C%2Fsub%3EO%3Csub%3E4%3C%5C%2Fsub%3E%20Oxide%20Nanofibers%20as%20Anode%20Material%20for%20Li%26%23×2010%3BIon%20Batteries.%20%3Ci%3ESmall%3C%5C%2Fi%3E%2C%20%3Ci%3E19%3C%5C%2Fi%3E%2846%29%2C%202304585.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1002%5C%2Fsmll.202304585%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1002%5C%2Fsmll.202304585%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Charge%20Storage%20Mechanism%20in%20Electrospun%20Spinel%5Cu2010Structured%20High%5Cu2010Entropy%20%28Mn%3Csub%3E0.2%3C%5C%2Fsub%3EFe%3Csub%3E0.2%3C%5C%2Fsub%3ECo%3Csub%3E0.2%3C%5C%2Fsub%3ENi%3Csub%3E0.2%3C%5C%2Fsub%3EZn%3Csub%3E0.2%3C%5C%2Fsub%3E%29%3Csub%3E3%3C%5C%2Fsub%3EO%3Csub%3E4%3C%5C%2Fsub%3E%20Oxide%20Nanofibers%20as%20Anode%20Material%20for%20Li%5Cu2010Ion%20Batteries%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Claudia%22%2C%22lastName%22%3A%22Triolo%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Mariam%22%2C%22lastName%22%3A%22Maisuradze%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Min%22%2C%22lastName%22%3A%22Li%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Yanchen%22%2C%22lastName%22%3A%22Liu%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Alessandro%22%2C%22lastName%22%3A%22Ponti%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Gioele%22%2C%22lastName%22%3A%22Pagot%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Vito%22%2C%22lastName%22%3A%22Di%20Noto%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Giuliana%22%2C%22lastName%22%3A%22Aquilanti%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Nicola%22%2C%22lastName%22%3A%22Pinna%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Marco%22%2C%22lastName%22%3A%22Giorgetti%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Saveria%22%2C%22lastName%22%3A%22Santangelo%22%7D%5D%2C%22abstractNote%22%3A%22Abstract%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20High%5Cu2010entropy%20oxides%20%28HEOs%29%20have%20emerged%20as%20promising%20anode%20materials%20for%20next%5Cu2010generation%20lithium%5Cu2010ion%20batteries%20%28LIBs%29.%20Among%20them%2C%20spinel%20HEOs%20with%20vacant%20lattice%20sites%20allowing%20for%20lithium%20insertion%20and%20diffusion%20seem%20particularly%20attractive.%20In%20this%20work%2C%20electrospun%20oxygen%5Cu2010deficient%20%28Mn%2CFe%2CCo%2CNi%2CZn%29%20HEO%20nanofibers%20are%20produced%20under%20environmentally%20friendly%20calcination%20conditions%20and%20evaluated%20as%20anode%20active%20material%20in%20LIBs.%20A%20thorough%20investigation%20of%20the%20material%20properties%20and%20Li%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%2B%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20storage%20mechanism%20is%20carried%20out%20by%20several%20analytical%20techniques%2C%20including%20ex%20situ%20synchrotron%20X%5Cu2010ray%20absorption%20spectroscopy.%20The%20lithiation%20process%20is%20elucidated%20in%20terms%20of%20lithium%20insertion%2C%20cation%20migration%2C%20and%20metal%5Cu2010forming%20conversion%20reaction.%20The%20process%20is%20not%20fully%20reversible%20and%20the%20reduction%20of%20cations%20to%20the%20metallic%20form%20is%20not%20complete.%20In%20particular%2C%20iron%2C%20cobalt%2C%20and%20nickel%2C%20initially%20present%20mainly%20as%20Fe%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%203%2B%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%2C%20Co%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%203%2B%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5C%2FCo%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%202%2B%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%2C%20and%20Ni%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%202%2B%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%2C%20undergo%20reduction%20to%20Fe%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%200%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%2C%20Co%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%200%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%2C%20and%20Ni%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%200%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20to%20different%20extent%20%28Fe%20%3C%20Co%20%3C%20Ni%29.%20Manganese%20undergoes%20partial%20reduction%20to%20Mn%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%203%2B%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5C%2FMn%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%202%2B%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20and%2C%20upon%20re%5Cu2010oxidation%2C%20does%20not%20revert%20to%20the%20pristine%20oxidation%20state%20%28%2B4%29.%20Zn%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%202%2B%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20cations%20do%20not%20electrochemically%20participate%20in%20the%20conversion%20reaction%2C%20but%20migrating%20from%20tetrahedral%20to%20octahedral%20positions%2C%20they%20facilitate%20Li%5Cu2010ion%20transport%20within%20lattice%20channels%20opened%20by%20their%20migration.%20Partially%20reversible%20crystal%20phase%20transitions%20are%20observed.%22%2C%22date%22%3A%222023-11-15%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1002%5C%2Fsmll.202304585%22%2C%22ISSN%22%3A%221613-6810%2C%201613-6829%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fonlinelibrary.wiley.com%5C%2Fdoi%5C%2F10.1002%5C%2Fsmll.202304585%22%2C%22collections%22%3A%5B%227WAEICCJ%22%5D%2C%22dateModified%22%3A%222024-01-24T12%3A46%3A33Z%22%7D%7D%2C%7B%22key%22%3A%22HUKWS2A9%22%2C%22library%22%3A%7B%22id%22%3A11840969%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22V%5Cu00edlchez-C%5Cu00f3zar%20et%20al.%22%2C%22parsedDate%22%3A%222023-11-15%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EV%26%23xED%3Blchez-C%26%23xF3%3Bzar%2C%20%26%23xC1%3B.%2C%20Colodrero%2C%20R.%20M.%20P.%2C%20Bazaga-Garc%26%23xED%3Ba%2C%20M.%2C%20Marrero-L%26%23xF3%3Bpez%2C%20D.%2C%20El-refaei%2C%20S.%20M.%2C%20Russo%2C%20P.%20A.%2C%20Pinna%2C%20N.%2C%20Olivera-Pastor%2C%20P.%2C%20%26amp%3B%20Cabeza%2C%20A.%20%282023%29.%20Tuning%20the%20activity%20of%20cobalt%202-hydroxyphosphonoacetates-derived%20electrocatalysts%20for%20water%20splitting%20and%20oxygen%20reduction%3A%20Insights%20into%20the%20local%20order%20by%20pair%20distribution%20function%20analysis.%20%3Ci%3EApplied%20Catalysis%20B%3A%20Environmental%3C%5C%2Fi%3E%2C%20%3Ci%3E337%3C%5C%2Fi%3E%2C%20122963.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1016%5C%2Fj.apcatb.2023.122963%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1016%5C%2Fj.apcatb.2023.122963%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Tuning%20the%20activity%20of%20cobalt%202-hydroxyphosphonoacetates-derived%20electrocatalysts%20for%20water%20splitting%20and%20oxygen%20reduction%3A%20Insights%20into%20the%20local%20order%20by%20pair%20distribution%20function%20analysis%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22%5Cu00c1lvaro%22%2C%22lastName%22%3A%22V%5Cu00edlchez-C%5Cu00f3zar%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Rosario%20M.P.%22%2C%22lastName%22%3A%22Colodrero%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Montse%22%2C%22lastName%22%3A%22Bazaga-Garc%5Cu00eda%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22David%22%2C%22lastName%22%3A%22Marrero-L%5Cu00f3pez%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Sayed%20M.%22%2C%22lastName%22%3A%22El-refaei%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Patr%5Cu00edcia%20A.%22%2C%22lastName%22%3A%22Russo%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Nicola%22%2C%22lastName%22%3A%22Pinna%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Pascual%22%2C%22lastName%22%3A%22Olivera-Pastor%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Aurelio%22%2C%22lastName%22%3A%22Cabeza%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%222023-11-15%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1016%5C%2Fj.apcatb.2023.122963%22%2C%22ISSN%22%3A%2209263373%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Flinkinghub.elsevier.com%5C%2Fretrieve%5C%2Fpii%5C%2FS0926337323006069%22%2C%22collections%22%3A%5B%227WAEICCJ%22%5D%2C%22dateModified%22%3A%222024-01-24T12%3A44%3A58Z%22%7D%7D%2C%7B%22key%22%3A%22ST2BC8ST%22%2C%22library%22%3A%7B%22id%22%3A11840969%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Munn%20et%20al.%22%2C%22parsedDate%22%3A%222023-11-14%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EMunn%2C%20B.%20R.%2C%20M%26%23xFC%3Bller%2C%20E.%20J.%2C%20Aru%2C%20J.%2C%20Whyte%2C%20C.%20J.%2C%20Gidon%2C%20A.%2C%20Larkum%2C%20M.%20E.%2C%20%26amp%3B%20Shine%2C%20J.%20M.%20%282023%29.%20A%20thalamocortical%20substrate%20for%20integrated%20information%20via%20critical%20synchronous%20bursting.%20%3Ci%3EProceedings%20of%20the%20National%20Academy%20of%20Sciences%3C%5C%2Fi%3E%2C%20%3Ci%3E120%3C%5C%2Fi%3E%2846%29%2C%20e2308670120.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1073%5C%2Fpnas.2308670120%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1073%5C%2Fpnas.2308670120%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22A%20thalamocortical%20substrate%20for%20integrated%20information%20via%20critical%20synchronous%20bursting%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Brandon%20R.%22%2C%22lastName%22%3A%22Munn%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Eli%20J.%22%2C%22lastName%22%3A%22M%5Cu00fcller%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jaan%22%2C%22lastName%22%3A%22Aru%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Christopher%20J.%22%2C%22lastName%22%3A%22Whyte%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Albert%22%2C%22lastName%22%3A%22Gidon%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Matthew%20E.%22%2C%22lastName%22%3A%22Larkum%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22James%20M.%22%2C%22lastName%22%3A%22Shine%22%7D%5D%2C%22abstractNote%22%3A%22Understanding%20the%20neurobiological%20mechanisms%20underlying%20consciousness%20remains%20a%20significant%20challenge.%20Recent%20evidence%20suggests%20that%20the%20coupling%20between%20distal%5Cu2013apical%20and%20basal%5Cu2013somatic%20dendrites%20in%20thick-tufted%20layer%205%20pyramidal%20neurons%20%28L5%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20PN%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%29%2C%20regulated%20by%20the%20nonspecific-projecting%20thalamus%2C%20is%20crucial%20for%20consciousness.%20Yet%2C%20it%20is%20uncertain%20whether%20this%20thalamocortical%20mechanism%20can%20support%20emergent%20signatures%20of%20consciousness%2C%20such%20as%20integrated%20information.%20To%20address%20this%20question%2C%20we%20constructed%20a%20biophysical%20network%20of%20dual-compartment%20thick-tufted%20L5%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20PN%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%2C%20with%20dendrosomatic%20coupling%20controlled%20by%20thalamic%20inputs.%20Our%20findings%20demonstrate%20that%20integrated%20information%20is%20maximized%20when%20nonspecific%20thalamic%20inputs%20drive%20the%20system%20into%20a%20regime%20of%20time-varying%20synchronous%20bursting.%20Here%2C%20the%20system%20exhibits%20variable%20spiking%20dynamics%20with%20broad%20pairwise%20correlations%2C%20supporting%20the%20enhanced%20integrated%20information.%20Further%2C%20the%20observed%20peak%20in%20integrated%20information%20aligns%20with%20criticality%20signatures%20and%20empirically%20observed%20layer%205%20pyramidal%20bursting%20rates.%20These%20results%20suggest%20that%20the%20thalamocortical%20core%20of%20the%20mammalian%20brain%20may%20be%20evolutionarily%20configured%20to%20optimize%20effective%20information%20processing%2C%20providing%20a%20potential%20neuronal%20mechanism%20that%20integrates%20microscale%20theories%20with%20macroscale%20signatures%20of%20consciousness.%22%2C%22date%22%3A%222023-11-14%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1073%5C%2Fpnas.2308670120%22%2C%22ISSN%22%3A%220027-8424%2C%201091-6490%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fpnas.org%5C%2Fdoi%5C%2F10.1073%5C%2Fpnas.2308670120%22%2C%22collections%22%3A%5B%227WAEICCJ%22%5D%2C%22dateModified%22%3A%222024-01-24T11%3A56%3A47Z%22%7D%7D%2C%7B%22key%22%3A%22HA9RZ9F4%22%2C%22library%22%3A%7B%22id%22%3A11840969%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Chen%20et%20al.%22%2C%22parsedDate%22%3A%222023-11-09%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EChen%2C%20Y.%2C%20Wang%2C%20H.%2C%20Chen%2C%20H.%2C%20Zhang%2C%20W.%2C%20Xu%2C%20S.%2C%20P%26%23xE4%3Btzel%2C%20M.%2C%20Ma%2C%20C.%2C%20Wang%2C%20C.%2C%20McCulloch%2C%20I.%2C%20Hecht%2C%20S.%2C%20%26amp%3B%20Samor%26%23xEC%3B%2C%20P.%20%282023%29.%20Quasi%26%23×2010%3B1D%20Polymer%20Semiconductor%26%23×2013%3BDiarylethene%20Blends%3A%20High%20Performance%20Optically%20Switchable%20Transistors.%20%3Ci%3EAdvanced%20Functional%20Materials%3C%5C%2Fi%3E%2C%20%3Ci%3E33%3C%5C%2Fi%3E%2846%29%2C%202305494.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1002%5C%2Fadfm.202305494%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1002%5C%2Fadfm.202305494%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Quasi%5Cu20101D%20Polymer%20Semiconductor%5Cu2013Diarylethene%20Blends%3A%20High%20Performance%20Optically%20Switchable%20Transistors%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Yusheng%22%2C%22lastName%22%3A%22Chen%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Hanlin%22%2C%22lastName%22%3A%22Wang%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Hu%22%2C%22lastName%22%3A%22Chen%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Weimin%22%2C%22lastName%22%3A%22Zhang%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Shunqi%22%2C%22lastName%22%3A%22Xu%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Michael%22%2C%22lastName%22%3A%22P%5Cu00e4tzel%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Chun%22%2C%22lastName%22%3A%22Ma%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Cang%22%2C%22lastName%22%3A%22Wang%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Iain%22%2C%22lastName%22%3A%22McCulloch%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Stefan%22%2C%22lastName%22%3A%22Hecht%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Paolo%22%2C%22lastName%22%3A%22Samor%5Cu00ec%22%7D%5D%2C%22abstractNote%22%3A%22Abstract%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20Optically%20switchable%20field%5Cu2010effect%20transistors%20%28OSFETs%29%20are%20non%5Cu2010volatile%20photonic%20memory%20devices%20holding%20a%20great%20potential%20for%20applications%20in%20optical%20information%20storage%20and%20telecommunications.%20Solution%20processing%20of%20blends%20of%20photochromic%20molecules%20and%20%5Cu03c0%5Cu2010conjugated%20polymers%20is%20a%20low%5Cu2010cost%20protocol%20to%20integrate%20simultaneously%20optical%20switching%20and%20charge%20transport%20functions%20in%20large%5Cu2010area%20devices.%20However%2C%20the%20limited%20reversibility%20of%20the%20isomerization%20of%20photochromic%20molecules%20due%20to%20steric%20hindrance%20when%20embedded%20in%20ordered%20polymeric%20matrices%20represents%20a%20severe%20limitation%20and%20it%20obliges%20to%20incorporate%20as%20much%20as%2020%25%20in%20weight%20of%20the%20photochromic%20component%2C%20thereby%20drastically%20diluting%20the%20electronic%20function%2C%20limiting%20the%20device%20performance.%20Herein%2C%20a%20comparative%20study%20of%20the%20photoresponsivity%20of%20a%20suitably%20designed%20diarylethene%20molecule%20is%20reported%20when%20embedded%20in%20the%20matrix%20of%20six%20different%20polymer%20semiconductors%20displaying%20diverse%20charge%20transport%20properties.%20In%20particular%2C%20this%20study%20focuses%20on%20three%20semi%5Cu2010crystalline%20polymers%20and%20three%20quasi%5Cu20101D%20polymers.%20It%20is%20found%20that%201%25%20w%5C%2Fw%20of%5Cu00a01%2C2%5Cu2010bis%285%5Cu2010%283%2C5%5Cu2010di%5Cu2010tert%5Cu2010butylphenyl%29%5Cu20102%5Cu2010methylthiophen%5Cu20103%5Cu2010yl%29cyclopent%5Cu20101%5Cu2010ene%20in%20a%20blend%20with%20poly%28indacenodithiophene%5Cu2010co%5Cu2010benzothiadiazole%29%20is%20sufficient%20to%20fabricate%20OSFETs%20combining%20photo%5Cu2010modulation%20efficiencies%20of%2045.5%25%2C%20mobilities%20%3E1%5Cu00a0cm%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%202%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20V%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu22121%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20s%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu22121%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%2C%20and%20photo%5Cu2010recovered%20efficiencies%20of%2098.1%25.%20These%20findings%20demonstrate%20that%20quasi%5Cu20101D%20polymer%20semiconductors%2C%20because%20of%20their%20charge%20transport%20dominated%20by%20intra%5Cu2010molecular%20processes%2C%20epitomize%20the%20molecular%20design%20principles%20required%20for%20the%20fabrication%20of%20high%5Cu2010performance%20OSFETs.%22%2C%22date%22%3A%222023-11-09%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1002%5C%2Fadfm.202305494%22%2C%22ISSN%22%3A%221616-301X%2C%201616-3028%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fonlinelibrary.wiley.com%5C%2Fdoi%5C%2F10.1002%5C%2Fadfm.202305494%22%2C%22collections%22%3A%5B%227WAEICCJ%22%5D%2C%22dateModified%22%3A%222024-01-24T11%3A21%3A43Z%22%7D%7D%2C%7B%22key%22%3A%229TVUDIBZ%22%2C%22library%22%3A%7B%22id%22%3A11840969%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Funk%20et%20al.%22%2C%22parsedDate%22%3A%222023-11-08%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EFunk%2C%20H.%2C%20Binyamin%2C%20T.%2C%20Etgar%2C%20L.%2C%20Shargaieva%2C%20O.%2C%20Unold%2C%20T.%2C%20Eljarrat%2C%20A.%2C%20Koch%2C%20C.%20T.%2C%20%26amp%3B%20Abou-Ras%2C%20D.%20%282023%29.%20Phase%20Segregation%20Mechanisms%20in%20Mixed-Halide%20CsPb%28Br%3Csub%3E%3Ci%3Ex%3C%5C%2Fi%3E%3C%5C%2Fsub%3EI%3Csub%3E1%26%23×2013%3B%3Ci%3Ex%3C%5C%2Fi%3E%20%3C%5C%2Fsub%3E%29%3Csub%3E3%3C%5C%2Fsub%3E%20Nanocrystals%20in%20Dependence%20of%20Their%20Sizes%20and%20Their%20Initial%20%5BBr%5D%3A%5BI%5D%20Ratios.%20%3Ci%3EACS%20Materials%20Au%3C%5C%2Fi%3E%2C%20%3Ci%3E3%3C%5C%2Fi%3E%286%29%2C%20687%26%23×2013%3B698.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1021%5C%2Facsmaterialsau.3c00056%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1021%5C%2Facsmaterialsau.3c00056%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Phase%20Segregation%20Mechanisms%20in%20Mixed-Halide%20CsPb%28Br%3Csub%3E%3Ci%3Ex%3C%5C%2Fi%3E%3C%5C%2Fsub%3EI%3Csub%3E1%5Cu2013%3Ci%3Ex%3C%5C%2Fi%3E%20%3C%5C%2Fsub%3E%29%3Csub%3E3%3C%5C%2Fsub%3E%20Nanocrystals%20in%20Dependence%20of%20Their%20Sizes%20and%20Their%20Initial%20%5BBr%5D%3A%5BI%5D%20Ratios%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Hannah%22%2C%22lastName%22%3A%22Funk%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Tal%22%2C%22lastName%22%3A%22Binyamin%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Lioz%22%2C%22lastName%22%3A%22Etgar%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Oleksandra%22%2C%22lastName%22%3A%22Shargaieva%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Thomas%22%2C%22lastName%22%3A%22Unold%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Alberto%22%2C%22lastName%22%3A%22Eljarrat%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Christoph%20T.%22%2C%22lastName%22%3A%22Koch%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Daniel%22%2C%22lastName%22%3A%22Abou-Ras%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%222023-11-08%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1021%5C%2Facsmaterialsau.3c00056%22%2C%22ISSN%22%3A%222694-2461%2C%202694-2461%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fpubs.acs.org%5C%2Fdoi%5C%2F10.1021%5C%2Facsmaterialsau.3c00056%22%2C%22collections%22%3A%5B%227WAEICCJ%22%5D%2C%22dateModified%22%3A%222024-01-24T11%3A29%3A24Z%22%7D%7D%2C%7B%22key%22%3A%2274AQVHMY%22%2C%22library%22%3A%7B%22id%22%3A11840969%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Xu%20et%20al.%22%2C%22parsedDate%22%3A%222023-11-03%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EXu%2C%20W.%2C%20Xu%2C%20Y.%2C%20Grzimek%2C%20V.%2C%20Martin%2C%20A.%2C%20Schultz%2C%20T.%2C%20Russo%2C%20P.%20A.%2C%20Lu%2C%20Y.%2C%20Koch%2C%20N.%2C%20%26amp%3B%20Pinna%2C%20N.%20%282023%29.%20Insights%20into%20the%20kinetics%26%23×2013%3Bmorphology%20relationship%20of%201-%2C%202-%2C%20and%203D%20TiNb%3Csub%3E2%3C%5C%2Fsub%3EO%3Csub%3E7%3C%5C%2Fsub%3E%20anodes%20for%20Li-ion%20storage.%20%3Ci%3ENano%20Research%3C%5C%2Fi%3E.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1007%5C%2Fs12274-023-6201-1%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1007%5C%2Fs12274-023-6201-1%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Insights%20into%20the%20kinetics%5Cu2013morphology%20relationship%20of%201-%2C%202-%2C%20and%203D%20TiNb%3Csub%3E2%3C%5C%2Fsub%3EO%3Csub%3E7%3C%5C%2Fsub%3E%20anodes%20for%20Li-ion%20storage%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Wenlei%22%2C%22lastName%22%3A%22Xu%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Yaolin%22%2C%22lastName%22%3A%22Xu%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Veronika%22%2C%22lastName%22%3A%22Grzimek%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Andrea%22%2C%22lastName%22%3A%22Martin%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Thorsten%22%2C%22lastName%22%3A%22Schultz%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Patr%5Cu00edcia%20A.%22%2C%22lastName%22%3A%22Russo%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Yan%22%2C%22lastName%22%3A%22Lu%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Norbert%22%2C%22lastName%22%3A%22Koch%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Nicola%22%2C%22lastName%22%3A%22Pinna%22%7D%5D%2C%22abstractNote%22%3A%22Abstract%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20Understanding%20the%20influence%20of%20electrode%20material%5Cu2019s%20morphology%20on%20electrochemical%20behavior%20is%20of%20great%20significance%20for%20the%20development%20of%20rechargeable%20batteries%2C%20however%2C%20such%20studies%20are%20often%20limited%20by%20the%20inability%20to%20precisely%20control%20the%20morphology%20of%20electrode%20materials.%20Herein%2C%20nanostructured%20titanium%20niobium%20oxides%20%28TiNb%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%202%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20O%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%207%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%29%20with%20three%20different%20morphologies%20%28one-dimensional%20%281D%29%2C%20two-dimensional%20%282D%29%2C%20and%20three-dimensional%20%283D%29%29%20were%20synthesized%20via%20a%20facile%20microwave-assisted%20solvothermal%20method.%20The%20influence%20of%20the%20morphological%20dimension%20of%20TiNb%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%202%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20O%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%207%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20as%20electrode%20material%20on%20the%20electrochemical%20performance%20in%20Li-ion%20batteries%20%28LIBs%29%20and%20the%20underlying%20correlation%20with%20the%20electrochemical%20kinetics%20were%20studied%20in%20detail.%202D%20TiNb%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%202%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20O%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%207%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%28TNO-2D%29%20shows%20a%20superior%20rate%20capability%20and%20cycling%20stability%2C%20associated%20with%20improved%20kinetics%20for%20charge%20transfer%20and%20Li-ion%20diffusion%2C%20compared%20to%20the%201D%20and%203D%20materials.%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20Operando%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20X-ray%20diffraction%20measurements%20reveal%20the%20structural%20stability%20and%20crystallographic%20evolution%20of%20TNO-2D%20upon%20lithiation%20and%20delithiation%20and%20correlate%20the%20Li-ion%20diffusion%20kinetics%20with%20the%20lattice%20evolution%20during%20battery%20charge%20and%20discharge.%20Moreover%2C%20carbon-coated%20TNO-2D%20achieves%20enhanced%20rate%20capability%20%28205%20mAh%5Cu00b7g%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu22121%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20at%2050%20C%29%20and%20long-term%20cycling%20stability%20%2887%25%20after%201000%20cycles%20at%205%20C%29.%20This%20work%20provides%20insights%20into%20the%20rational%20morphology%20design%20of%20electrode%20materials%20for%20accelerated%20charge%20transfer%20and%20enhanced%20fast-charging%20capability%2C%20pushing%20forward%20the%20development%20of%20electrode%20materials%20for%20high-power%20rechargeable%20batteries%20in%20future%20energy%20storage.%22%2C%22date%22%3A%222023-11-03%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1007%5C%2Fs12274-023-6201-1%22%2C%22ISSN%22%3A%221998-0124%2C%201998-0000%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Flink.springer.com%5C%2F10.1007%5C%2Fs12274-023-6201-1%22%2C%22collections%22%3A%5B%227WAEICCJ%22%5D%2C%22dateModified%22%3A%222024-01-24T11%3A34%3A51Z%22%7D%7D%2C%7B%22key%22%3A%226SIY3VQ9%22%2C%22library%22%3A%7B%22id%22%3A11840969%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Zorn%20Morales%20et%20al.%22%2C%22parsedDate%22%3A%222023-10-27%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EZorn%20Morales%2C%20N.%2C%20R%26%23xFC%3Bhl%2C%20D.%20S.%2C%20Sadofev%2C%20S.%2C%20Ligorio%2C%20G.%2C%20List-Kratochvil%2C%20E.%2C%20Kewes%2C%20G.%2C%20%26amp%3B%20Blumstengel%2C%20S.%20%282023%29.%20Strong%20coupling%20of%20monolayer%20WS%3Csub%3E2%3C%5C%2Fsub%3E%20excitons%20and%20surface%20plasmon%20polaritons%20in%20a%20planar%20Ag%5C%2FWS%3Csub%3E2%3C%5C%2Fsub%3E%20hybrid%20structure.%20%3Ci%3EPhysical%20Review%20B%3C%5C%2Fi%3E%2C%20%3Ci%3E108%3C%5C%2Fi%3E%2816%29%2C%20165426.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1103%5C%2FPhysRevB.108.165426%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1103%5C%2FPhysRevB.108.165426%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Strong%20coupling%20of%20monolayer%20WS%3Csub%3E2%3C%5C%2Fsub%3E%20excitons%20and%20surface%20plasmon%20polaritons%20in%20a%20planar%20Ag%5C%2FWS%3Csub%3E2%3C%5C%2Fsub%3E%20hybrid%20structure%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Nicolas%22%2C%22lastName%22%3A%22Zorn%20Morales%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Daniel%20Steffen%22%2C%22lastName%22%3A%22R%5Cu00fchl%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Sergey%22%2C%22lastName%22%3A%22Sadofev%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Giovanni%22%2C%22lastName%22%3A%22Ligorio%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Emil%22%2C%22lastName%22%3A%22List-Kratochvil%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22G%5Cu00fcnter%22%2C%22lastName%22%3A%22Kewes%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Sylke%22%2C%22lastName%22%3A%22Blumstengel%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%222023-10-27%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1103%5C%2FPhysRevB.108.165426%22%2C%22ISSN%22%3A%222469-9950%2C%202469-9969%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Flink.aps.org%5C%2Fdoi%5C%2F10.1103%5C%2FPhysRevB.108.165426%22%2C%22collections%22%3A%5B%227WAEICCJ%22%5D%2C%22dateModified%22%3A%222024-01-24T12%3A31%3A34Z%22%7D%7D%2C%7B%22key%22%3A%22TICRSLP9%22%2C%22library%22%3A%7B%22id%22%3A11840969%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Triolo%20et%20al.%22%2C%22parsedDate%22%3A%222023-10-22%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3ETriolo%2C%20C.%2C%20Moulaee%2C%20K.%2C%20Ponti%2C%20A.%2C%20Pagot%2C%20G.%2C%20Di%20Noto%2C%20V.%2C%20Pinna%2C%20N.%2C%20Neri%2C%20G.%2C%20%26amp%3B%20Santangelo%2C%20S.%20%282023%29.%20Spinel%26%23×2010%3BStructured%20High%26%23×2010%3BEntropy%20Oxide%20Nanofibers%20as%20Electrocatalysts%20for%20Oxygen%20Evolution%20in%20Alkaline%20Solution%3A%20Effect%20of%20Metal%20Combination%20and%20Calcination%20Temperature.%20%3Ci%3EAdvanced%20Functional%20Materials%3C%5C%2Fi%3E%2C%202306375.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1002%5C%2Fadfm.202306375%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1002%5C%2Fadfm.202306375%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Spinel%5Cu2010Structured%20High%5Cu2010Entropy%20Oxide%20Nanofibers%20as%20Electrocatalysts%20for%20Oxygen%20Evolution%20in%20Alkaline%20Solution%3A%20Effect%20of%20Metal%20Combination%20and%20Calcination%20Temperature%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Claudia%22%2C%22lastName%22%3A%22Triolo%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Kaveh%22%2C%22lastName%22%3A%22Moulaee%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Alessandro%22%2C%22lastName%22%3A%22Ponti%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Gioele%22%2C%22lastName%22%3A%22Pagot%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Vito%22%2C%22lastName%22%3A%22Di%20Noto%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Nicola%22%2C%22lastName%22%3A%22Pinna%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Giovanni%22%2C%22lastName%22%3A%22Neri%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Saveria%22%2C%22lastName%22%3A%22Santangelo%22%7D%5D%2C%22abstractNote%22%3A%22Abstract%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20Defect%5Cu2010engineering%20is%20a%20viable%20strategy%20to%20improve%20the%20activity%20of%20nanocatalysts%20for%20the%20oxygen%20evolution%20reaction%20%28OER%29%2C%20whose%20slow%20kinetics%20still%20strongly%20limits%20the%20broad%20market%20penetration%20of%20electrochemical%20water%20splitting%20as%20a%20sustainable%20technology%20for%20large%5Cu2010scale%20hydrogen%20production.%20High%5Cu2010entropy%20spinel%20oxides%20%28HESOs%29%20are%20in%20focus%20due%20to%20their%20great%20potential%20as%20low%5Cu2010cost%20OER%20electrocatalysts.%20In%20this%20work%2C%20electrospun%20HESO%20nanofibers%20%28NFs%29%2C%20based%20on%20%28Cr%2CMn%2CFe%2CCo%2CNi%29%2C%20%28Cr%2CMn%2CFe%2CCo%2CZn%29%20and%20%28Cr%2CMn%2CFe%2CNi%2CZn%29%20combinations%2C%20with%20granular%20architecture%20and%20oxygen%5Cu2010deficient%20surface%20are%20produced%20by%20calcination%20at%20low%20temperature%20%28600%20or%20500%5Cu00a0%5Cu00b0C%29%2C%20characterized%20by%20a%20combination%20of%20benchtop%20analytical%20techniques%20and%20evaluated%20as%20electrocatalysts%20for%20OER%20in%20alkaline%20medium.%20The%20variation%20of%20HESO%20composition%20and%20calcination%20temperature%20produces%20complex%20and%20interdependent%20changes%20in%20the%20morphology%20of%20the%20fibers%2C%20crystallinity%20and%20inversion%20degree%20of%20the%20spinel%20oxide%2C%20concentration%20of%20the%20oxygen%5Cu2010vacancies%2C%20cation%20distribution%20in%20the%20lattice%2C%20which%20mirror%20on%20different%20electrochemical%20properties%20of%20the%20fibers.%20The%20best%20electrocatalytic%20performance%20%28overpotential%20and%20Tafel%20slope%20at%2010%5Cu00a0mA%5Cu00a0cm%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu22122%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%3A%20360%5Cu00a0mV%20and%2041%5Cu00a0mV%5Cu00a0dec%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu22121%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%2C%20respectively%29%20pertains%20to%20%28Cr%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%201%5C%2F5%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20Mn%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%201%5C%2F5%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20Fe%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%201%5C%2F5%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20Co%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%201%5C%2F5%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20Ni%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%201%5C%2F5%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%29%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%203%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20O%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%204%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20NFs%20calcined%20at%20500%5Cu00a0%5Cu00b0C%20and%20results%20from%20the%20lower%20outer%203d%5Cu2010electron%20number%2C%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20e%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20g%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20filling%20closer%20to%20its%20optimal%20value%20and%20higher%20occupation%20of%2016%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20d%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20sites%20by%20the%20most%20redox%5Cu2010active%20species.%22%2C%22date%22%3A%222023-10-22%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1002%5C%2Fadfm.202306375%22%2C%22ISSN%22%3A%221616-301X%2C%201616-3028%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fonlinelibrary.wiley.com%5C%2Fdoi%5C%2F10.1002%5C%2Fadfm.202306375%22%2C%22collections%22%3A%5B%227WAEICCJ%22%5D%2C%22dateModified%22%3A%222024-01-24T12%3A37%3A03Z%22%7D%7D%2C%7B%22key%22%3A%22N5RY87JI%22%2C%22library%22%3A%7B%22id%22%3A11840969%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Gatsios%20et%20al.%22%2C%22parsedDate%22%3A%222023-10-17%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EGatsios%2C%20C.%2C%20Opitz%2C%20A.%2C%20Lungwitz%2C%20D.%2C%20Mansour%2C%20A.%20E.%2C%20Schultz%2C%20T.%2C%20Shin%2C%20D.%2C%20Hammer%2C%20S.%2C%20Pflaum%2C%20J.%2C%20Zhang%2C%20Y.%2C%20Barlow%2C%20S.%2C%20Marder%2C%20S.%20R.%2C%20%26amp%3B%20Koch%2C%20N.%20%282023%29.%20Surface%20doping%20of%20rubrene%20single%20crystals%20by%20molecular%20electron%20donors%20and%20acceptors.%20%3Ci%3EPhysical%20Chemistry%20Chemical%20Physics%3C%5C%2Fi%3E%2C%20%3Ci%3E25%3C%5C%2Fi%3E%2843%29%2C%2029718%26%23×2013%3B29726.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1039%5C%2FD3CP03640E%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1039%5C%2FD3CP03640E%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Surface%20doping%20of%20rubrene%20single%20crystals%20by%20molecular%20electron%20donors%20and%20acceptors%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Christos%22%2C%22lastName%22%3A%22Gatsios%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Andreas%22%2C%22lastName%22%3A%22Opitz%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Dominique%22%2C%22lastName%22%3A%22Lungwitz%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Ahmed%20E.%22%2C%22lastName%22%3A%22Mansour%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Thorsten%22%2C%22lastName%22%3A%22Schultz%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Dongguen%22%2C%22lastName%22%3A%22Shin%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Sebastian%22%2C%22lastName%22%3A%22Hammer%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jens%22%2C%22lastName%22%3A%22Pflaum%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Yadong%22%2C%22lastName%22%3A%22Zhang%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Stephen%22%2C%22lastName%22%3A%22Barlow%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Seth%20R.%22%2C%22lastName%22%3A%22Marder%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Norbert%22%2C%22lastName%22%3A%22Koch%22%7D%5D%2C%22abstractNote%22%3A%22Surface%20transfer%20doping%20with%20molecular%20donors%5C%2Facceptors%20enables%20controlling%20the%20Fermi%20level%20position%20of%20rubrene%20single%20crystal%20surfaces%20without%20disrupting%20the%20electronic%20band%20structure.%20%5Cn%20%20%20%20%20%20%20%20%20%20%2C%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20The%20surface%20molecular%20doping%20of%20organic%20semiconductors%20can%20play%20an%20important%20role%20in%20the%20development%20of%20organic%20electronic%20or%20optoelectronic%20devices.%20Single-crystal%20rubrene%20remains%20a%20leading%20molecular%20candidate%20for%20applications%20in%20electronics%20due%20to%20its%20high%20hole%20mobility.%20In%20parallel%2C%20intensive%20research%20into%20the%20fabrication%20of%20flexible%20organic%20electronics%20requires%20the%20careful%20design%20of%20functional%20interfaces%20to%20enable%20optimal%20device%20characteristics.%20To%20this%20end%2C%20the%20present%20work%20seeks%20to%20understand%20the%20effect%20of%20surface%20molecular%20doping%20on%20the%20electronic%20band%20structure%20of%20rubrene%20single%20crystals.%20Our%20angle-resolved%20photoemission%20measurements%20reveal%20that%20the%20Fermi%20level%20moves%20in%20the%20band%20gap%20of%20rubrene%20depending%20on%20the%20direction%20of%20surface%20electron-transfer%20reactions%20with%20the%20molecular%20dopants%2C%20yet%20the%20valence%20band%20dispersion%20remains%20essentially%20unperturbed.%20This%20indicates%20that%20surface%20electron-transfer%20doping%20of%20a%20molecular%20single%20crystal%20can%20effectively%20modify%20the%20near-surface%20charge%20density%2C%20while%20retaining%20good%20charge-carrier%20mobility.%22%2C%22date%22%3A%222023-10-17%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1039%5C%2FD3CP03640E%22%2C%22ISSN%22%3A%221463-9076%2C%201463-9084%22%2C%22url%22%3A%22http%3A%5C%2F%5C%2Fxlink.rsc.org%5C%2F%3FDOI%3DD3CP03640E%22%2C%22collections%22%3A%5B%227WAEICCJ%22%5D%2C%22dateModified%22%3A%222024-01-24T11%3A43%3A47Z%22%7D%7D%2C%7B%22key%22%3A%22NIGBWKE6%22%2C%22library%22%3A%7B%22id%22%3A11840969%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Iqbal%20et%20al.%22%2C%22parsedDate%22%3A%222023-10-13%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EIqbal%2C%20Z.%2C%20Zu%2C%20F.%2C%20Musiienko%2C%20A.%2C%20Gutierrez-Partida%2C%20E.%2C%20K%26%23xF6%3Bbler%2C%20H.%2C%20Gries%2C%20T.%20W.%2C%20Sannino%2C%20G.%20V.%2C%20Canil%2C%20L.%2C%20Koch%2C%20N.%2C%20Stolterfoht%2C%20M.%2C%20Neher%2C%20D.%2C%20Pavone%2C%20M.%2C%20Mu%26%23xF1%3Boz-Garc%26%23xED%3Ba%2C%20A.%20B.%2C%20Abate%2C%20A.%2C%20%26amp%3B%20Wang%2C%20Q.%20%282023%29.%20Interface%20Modification%20for%20Energy%20Level%20Alignment%20and%20Charge%20Extraction%20in%20CsPbI%20%3Csub%3E3%3C%5C%2Fsub%3E%20Perovskite%20Solar%20Cells.%20%3Ci%3EACS%20Energy%20Letters%3C%5C%2Fi%3E%2C%20%3Ci%3E8%3C%5C%2Fi%3E%2810%29%2C%204304%26%23×2013%3B4314.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1021%5C%2Facsenergylett.3c01522%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1021%5C%2Facsenergylett.3c01522%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Interface%20Modification%20for%20Energy%20Level%20Alignment%20and%20Charge%20Extraction%20in%20CsPbI%20%3Csub%3E3%3C%5C%2Fsub%3E%20Perovskite%20Solar%20Cells%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Zafar%22%2C%22lastName%22%3A%22Iqbal%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Fengshuo%22%2C%22lastName%22%3A%22Zu%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Artem%22%2C%22lastName%22%3A%22Musiienko%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Emilio%22%2C%22lastName%22%3A%22Gutierrez-Partida%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Hans%22%2C%22lastName%22%3A%22K%5Cu00f6bler%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Thomas%20W.%22%2C%22lastName%22%3A%22Gries%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Gennaro%20V.%22%2C%22lastName%22%3A%22Sannino%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Laura%22%2C%22lastName%22%3A%22Canil%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Norbert%22%2C%22lastName%22%3A%22Koch%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Martin%22%2C%22lastName%22%3A%22Stolterfoht%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Dieter%22%2C%22lastName%22%3A%22Neher%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Michele%22%2C%22lastName%22%3A%22Pavone%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Ana%20Belen%22%2C%22lastName%22%3A%22Mu%5Cu00f1oz-Garc%5Cu00eda%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Antonio%22%2C%22lastName%22%3A%22Abate%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Qiong%22%2C%22lastName%22%3A%22Wang%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%222023-10-13%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1021%5C%2Facsenergylett.3c01522%22%2C%22ISSN%22%3A%222380-8195%2C%202380-8195%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fpubs.acs.org%5C%2Fdoi%5C%2F10.1021%5C%2Facsenergylett.3c01522%22%2C%22collections%22%3A%5B%227WAEICCJ%22%5D%2C%22dateModified%22%3A%222024-01-24T11%3A42%3A50Z%22%7D%7D%2C%7B%22key%22%3A%22YQ9KRFYW%22%2C%22library%22%3A%7B%22id%22%3A11840969%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Mansour%20et%20al.%22%2C%22parsedDate%22%3A%222023-10-04%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EMansour%2C%20A.%20E.%2C%20Warren%2C%20R.%2C%20Lungwitz%2C%20D.%2C%20Forster%2C%20M.%2C%20Scherf%2C%20U.%2C%20Opitz%2C%20A.%2C%20Malischewski%2C%20M.%2C%20%26amp%3B%20Koch%2C%20N.%20%282023%29.%20Coordination%20of%20Tetracyanoquinodimethane-Derivatives%20with%20Tris%28pentafluorophenyl%29borane%20Provides%20Stronger%20p-Dopants%20with%20Enhanced%20Stability.%20%3Ci%3EACS%20Applied%20Materials%20%26amp%3B%20Interfaces%3C%5C%2Fi%3E%2C%20%3Ci%3E15%3C%5C%2Fi%3E%2839%29%2C%2046148%26%23×2013%3B46156.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1021%5C%2Facsami.3c10373%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1021%5C%2Facsami.3c10373%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Coordination%20of%20Tetracyanoquinodimethane-Derivatives%20with%20Tris%28pentafluorophenyl%29borane%20Provides%20Stronger%20p-Dopants%20with%20Enhanced%20Stability%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Ahmed%20E.%22%2C%22lastName%22%3A%22Mansour%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Ross%22%2C%22lastName%22%3A%22Warren%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Dominique%22%2C%22lastName%22%3A%22Lungwitz%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Michael%22%2C%22lastName%22%3A%22Forster%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Ullrich%22%2C%22lastName%22%3A%22Scherf%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Andreas%22%2C%22lastName%22%3A%22Opitz%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Moritz%22%2C%22lastName%22%3A%22Malischewski%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Norbert%22%2C%22lastName%22%3A%22Koch%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%222023-10-04%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1021%5C%2Facsami.3c10373%22%2C%22ISSN%22%3A%221944-8244%2C%201944-8252%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fpubs.acs.org%5C%2Fdoi%5C%2F10.1021%5C%2Facsami.3c10373%22%2C%22collections%22%3A%5B%227WAEICCJ%22%5D%2C%22dateModified%22%3A%222024-01-24T11%3A42%3A08Z%22%7D%7D%2C%7B%22key%22%3A%22RE845WJT%22%2C%22library%22%3A%7B%22id%22%3A11840969%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Yu%20et%20al.%22%2C%22parsedDate%22%3A%222023-10-03%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EYu%2C%20J.%2C%20Shen%2C%20Z.%2C%20Lu%2C%20W.%2C%20Zhu%2C%20Y.%2C%20Liu%2C%20Y.-X.%2C%20Neher%2C%20D.%2C%20Koch%2C%20N.%2C%20%26amp%3B%20Lu%2C%20G.%20%282023%29.%20Composition%20Waves%20in%20Solution%26%23×2010%3BProcessed%20Organic%20Films%20and%20Its%20Propagations%20from%20Kinetically%20Frozen%20Surface%20Mesophases.%20%3Ci%3EAdvanced%20Functional%20Materials%3C%5C%2Fi%3E%2C%20%3Ci%3E33%3C%5C%2Fi%3E%2840%29%2C%202302089.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1002%5C%2Fadfm.202302089%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1002%5C%2Fadfm.202302089%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Composition%20Waves%20in%20Solution%5Cu2010Processed%20Organic%20Films%20and%20Its%20Propagations%20from%20Kinetically%20Frozen%20Surface%20Mesophases%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jinde%22%2C%22lastName%22%3A%22Yu%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Zichao%22%2C%22lastName%22%3A%22Shen%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Wanlong%22%2C%22lastName%22%3A%22Lu%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Yuanwei%22%2C%22lastName%22%3A%22Zhu%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Yi-Xin%22%2C%22lastName%22%3A%22Liu%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Dieter%22%2C%22lastName%22%3A%22Neher%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Norbert%22%2C%22lastName%22%3A%22Koch%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Guanghao%22%2C%22lastName%22%3A%22Lu%22%7D%5D%2C%22abstractNote%22%3A%22Abstract%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20Organic%20thin%20films%20deposited%20from%20solution%20attract%20wide%20interest%20for%20next%5Cu2010generation%20%28opto%5Cu2010%29electronic%20and%20energy%20applications.%20During%20solvent%20evaporation%2C%20the%20phase%20evolution%20dynamics%20for%20different%20components%20at%20different%20locations%20are%20not%20synchronic%20within%20the%20incrementally%20concentrated%20liquid%20films%2C%20determining%20the%20final%20anisotropic%20morphology%20and%20performance.%20Herein%2C%20by%20examining%20tens%20of%20widely%20investigated%20optoelectronic%20organic%20films%2C%20the%20general%20existence%20of%20composition%20wave%20propagating%20along%20the%20surface%5Cu2010normal%20direction%20upon%20solidification%20is%20identified.%20The%20composition%20wave%20is%20initiated%20by%20a%20few%20nanometers%20thick%20surface%20mesophase%20kinetically%20forming%20at%20the%20foremost%20stage%20of%20phase%20transition%2C%20and%20afterward%20propagates%20toward%20the%20substrate%20during%20solvent%20evaporation.%20The%20composition%20waves%20exhibit%20well%5Cu2010defined%20wave%20properties%2C%20including%20spatial%20wavelength%2C%20period%2C%20amplitude%2C%20and%20propagation%20velocity.%20These%20wave%20properties%20are%20closely%20correlated%20with%20the%20evaporation%20rate%20and%20the%20diffusion%20rate%20of%20organic%20molecules%2C%20which%20determines%20the%20dynamically%20varied%20local%20composition%20gradient%20along%20the%20surface%5Cu2010normal%20direction.%20Such%20composition%20waves%20are%20commonly%20found%20for%20more%20than%2080%25%20of%20randomly%20examined%20solution%5Cu2010processed%20thin%20films%20for%20high%5Cu2010performance%20organic%20electronic%20devices%20including%20photovoltaic%20cells%20and%20field%5Cu2010effect%20transistors.%22%2C%22date%22%3A%222023-10-03%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1002%5C%2Fadfm.202302089%22%2C%22ISSN%22%3A%221616-301X%2C%201616-3028%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fonlinelibrary.wiley.com%5C%2Fdoi%5C%2F10.1002%5C%2Fadfm.202302089%22%2C%22collections%22%3A%5B%227WAEICCJ%22%5D%2C%22dateModified%22%3A%222024-01-24T11%3A41%3A38Z%22%7D%7D%2C%7B%22key%22%3A%22JREX3BBJ%22%2C%22library%22%3A%7B%22id%22%3A11840969%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Liu%20et%20al.%22%2C%22parsedDate%22%3A%222023-09-26%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3ELiu%2C%20Y.%2C%20Li%2C%20Z.%2C%20Liu%2C%20X.-H.%2C%20Pinna%2C%20N.%2C%20%26amp%3B%20Wang%2C%20Y.%20%282023%29.%20Atomically%20precise%20Au%3Csub%3Ex%3C%5C%2Fsub%3EAg%3Csub%3E25%26%23×2212%3Bx%3C%5C%2Fsub%3E%20nanoclusters%20with%20a%20modulated%20interstitial%20Au%26%23×2013%3BAg%20microenvironment%20for%20enhanced%20visible-light-driven%20photocatalytic%20hydrogen%20evolution.%20%3Ci%3ENanoscale%20Horizons%3C%5C%2Fi%3E%2C%20%3Ci%3E8%3C%5C%2Fi%3E%2810%29%2C%201435%26%23×2013%3B1439.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1039%5C%2FD3NH00235G%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1039%5C%2FD3NH00235G%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Atomically%20precise%20Au%3Csub%3Ex%3C%5C%2Fsub%3EAg%3Csub%3E25%5Cu2212x%3C%5C%2Fsub%3E%20nanoclusters%20with%20a%20modulated%20interstitial%20Au%5Cu2013Ag%20microenvironment%20for%20enhanced%20visible-light-driven%20photocatalytic%20hydrogen%20evolution%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Ye%22%2C%22lastName%22%3A%22Liu%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Zhi%22%2C%22lastName%22%3A%22Li%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Xiao-He%22%2C%22lastName%22%3A%22Liu%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Nicola%22%2C%22lastName%22%3A%22Pinna%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Yu%22%2C%22lastName%22%3A%22Wang%22%7D%5D%2C%22abstractNote%22%3A%22Herein%2C%20we%20report%20the%20study%20of%20atomically%20precise%20AuxAg25%5Cu2212x%20nanoclusters%20%28NCs%29%20toward%20photocatalytic%20hydrogen%20evolution.%20The%20incorporation%20of%20Au%20atoms%20into%20Ag25%20NCs%20not%20only%20narrowed%20the%20HOMO%5Cu2013LUMO%20gaps%20but%20also%20created%20an%20interstitial%20Au%5Cu2013Ag%20microenvironment%2C%20which%20promoted%20the%20photogenerated%20charge%20carrier%20utilization%20and%20optimized%20the%20reaction%20dynamics.%22%2C%22date%22%3A%222023-09-26%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1039%5C%2FD3NH00235G%22%2C%22ISSN%22%3A%222055-6764%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fpubs.rsc.org%5C%2Fen%5C%2Fcontent%5C%2Farticlelanding%5C%2F2023%5C%2Fnh%5C%2Fd3nh00235g%22%2C%22collections%22%3A%5B%227WAEICCJ%22%5D%2C%22dateModified%22%3A%222024-01-24T12%3A42%3A50Z%22%7D%7D%2C%7B%22key%22%3A%229I9KP4CQ%22%2C%22library%22%3A%7B%22id%22%3A11840969%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Gr%5Cu00fctzmacher%20et%20al.%22%2C%22parsedDate%22%3A%222023-09-23%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EGr%26%23xFC%3Btzmacher%2C%20S.%2C%20Heyl%2C%20M.%2C%20Nardi%2C%20M.%20V.%2C%20Koch%2C%20N.%2C%20List%26%23×2010%3BKratochvil%2C%20E.%20J.%20W.%2C%20%26amp%3B%20Ligorio%2C%20G.%20%282023%29.%20Local%20Manipulation%20of%20the%20Energy%20Levels%20of%202D%20TMDCs%20on%20the%20Microscale%20Level%20via%20Microprinted%20Self%26%23×2010%3BAssembled%20Monolayers.%20%3Ci%3EAdvanced%20Materials%20Interfaces%3C%5C%2Fi%3E%2C%20%3Ci%3E10%3C%5C%2Fi%3E%2827%29%2C%202300276.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1002%5C%2Fadmi.202300276%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1002%5C%2Fadmi.202300276%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Local%20Manipulation%20of%20the%20Energy%20Levels%20of%202D%20TMDCs%20on%20the%20Microscale%20Level%20via%20Microprinted%20Self%5Cu2010Assembled%20Monolayers%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Sarah%22%2C%22lastName%22%3A%22Gr%5Cu00fctzmacher%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Max%22%2C%22lastName%22%3A%22Heyl%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Marco%20Vittorio%22%2C%22lastName%22%3A%22Nardi%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Norbert%22%2C%22lastName%22%3A%22Koch%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Emil%20J.%20W.%22%2C%22lastName%22%3A%22List%5Cu2010Kratochvil%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Giovanni%22%2C%22lastName%22%3A%22Ligorio%22%7D%5D%2C%22abstractNote%22%3A%22Abstract%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%202D%20transition%20metal%20dichalcogenides%20%28TMDCs%29%20are%20atomically%5Cu2010thick%20semiconductors%20with%20great%5Cu00a0potential%20for%20next%5Cu2010generation%20optoelectronic%20applications%2C%20such%20as%20transistors%20and%20sensors.%20Their%20large%20surface%5Cu2010to%5Cu2010volume%20ratio%20makes%20them%20energy%5Cu2010efficient%20but%20also%20extremely%20sensitive%20to%20the%20physical%5Cu2010chemical%20surroundings.%20The%20latter%20must%20be%20carefully%20considered%20when%20predicting%20the%20electronic%20behavior%2C%20such%20as%20their%20energy%20level%20alignment%2C%20which%20ultimately%20affects%20the%20charge%20carrier%20injection%20and%20transport%20in%20devices.%20Here%2C%20local%20doping%20is%20demonstrated%20and%20thus%20adjusting%20the%20opto%5Cu2010electronic%20properties%20of%20monolayer%20TMDCs%20%28WSe%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%202%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20and%20MoS%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%202%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%29%20by%20chemically%20engineering%20the%20surface%20of%20the%20supporting%20substrate.%20This%20is%20achieved%20by%20decorating%20the%20substrate%20by%20microcontact%20printing%20with%20patterns%20of%20two%20different%20self%5Cu2010assembled%20monolayers%20%28SAMs%29.%20The%20SAMs%20posses%20distinct%20molecular%20dipoles%20and%20dielectric%20constants%2C%20significantly%20influencing%20the%20TMDCs%20electronic%20and%20optical%20properties.%20By%20analyzing%20%28on%20various%20substrtates%29%2C%20it%20is%20confirmed%20that%20these%20effects%20arise%20solely%20from%20the%20interaction%20between%20SAMs%20and%20TMDCs.%20Understanding%20the%20diverse%20dielectric%20environments%20experienced%20by%20TMDCs%20allows%20for%20a%20correlation%20between%20electronic%20and%20optical%20behaviours.%20The%20changes%20primarily%20involve%20alteration%20in%20the%20electronic%20band%20gap%20width%2C%20which%20can%20be%20calculated%20using%20the%20Schottky%5Cu2010Mott%20rule%2C%20incorporating%20the%20dielectric%20screening%20of%20the%20TMDCs%20surroundings.%20This%20knowledge%20enables%20accurate%20prediction%20of%20the%20%28opto%5Cu2010%29electronic%20behavior%20of%20monolayer%20TMDCs%20for%20advanced%20device%20design.%22%2C%22date%22%3A%222023-09-23%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1002%5C%2Fadmi.202300276%22%2C%22ISSN%22%3A%222196-7350%2C%202196-7350%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fonlinelibrary.wiley.com%5C%2Fdoi%5C%2F10.1002%5C%2Fadmi.202300276%22%2C%22collections%22%3A%5B%227WAEICCJ%22%5D%2C%22dateModified%22%3A%222024-01-24T11%3A40%3A49Z%22%7D%7D%2C%7B%22key%22%3A%22NMYS25I3%22%2C%22library%22%3A%7B%22id%22%3A11840969%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Gonzalez%20Oliva%20et%20al.%22%2C%22parsedDate%22%3A%222023-09-21%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EGonzalez%20Oliva%2C%20I.%2C%20Maurer%2C%20B.%2C%20Alex%2C%20B.%2C%20Tillack%2C%20S.%2C%20Schebek%2C%20M.%2C%20%26amp%3B%20Draxl%2C%20C.%20%282023%29.%20Hybrid%20Materials%3A%20Still%20Challenging%20for%20Ab%20Initio%20Theory%3F%20%3Ci%3EPhysica%20Status%20Solidi%20%28a%29%3C%5C%2Fi%3E%2C%20%3Ci%3E221%3C%5C%2Fi%3E%281%29%2C%202300170.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1002%5C%2Fpssa.202300170%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1002%5C%2Fpssa.202300170%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Hybrid%20Materials%3A%20Still%20Challenging%20for%20Ab%20Initio%20Theory%3F%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Ignacio%22%2C%22lastName%22%3A%22Gonzalez%20Oliva%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Benedikt%22%2C%22lastName%22%3A%22Maurer%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Ben%22%2C%22lastName%22%3A%22Alex%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Sebastian%22%2C%22lastName%22%3A%22Tillack%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Maximilian%22%2C%22lastName%22%3A%22Schebek%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Claudia%22%2C%22lastName%22%3A%22Draxl%22%7D%5D%2C%22abstractNote%22%3A%22Hybrid%20inorganic%5C%2Forganic%20systems%20%28HIOS%29%20open%20new%20avenues%20for%20tailoring%20them%20with%20respect%20to%20desired%20features%20and%20functions%20by%20exploiting%20the%20respective%20advantages%20of%20their%20components.%20Therefore%2C%20these%20materials%20are%20actively%20explored%20in%20many%20experimental%20studies%20and%20devices.%20On%20the%20theory%20side%2C%20similar%20investigations%20are%20rather%20scarce%20as%20such%20interfaces%2C%20in%20addition%20to%20exhibiting%20large%20unit%20cells%2C%20require%20highest%5Cu2010level%20theories%20to%20be%20described%20reliably.%20Consequently%2C%20hybrid%20materials%20pose%20a%20challenge%20for%20electronic%20structure%20theory%2C%20starting%20from%20density%5Cu2010functional%20theory%20to%20methods%20beyond%2C%20particularly%20many%5Cu2010body%20perturbation%20theory.%20This%20concerns%20both%20conceptual%20aspects%20and%20computational%20bottlenecks.%20In%20this%20perspective%2C%20the%20performance%20of%20state%5Cu2010of%5Cu2010the%5Cu2010art%20theoretical%20approaches%20applied%20to%20HIOS%20is%20summarized%2C%20mainly%20focusing%20on%20optoelectronic%20properties.%20Recent%20achievements%2C%20open%20challenges%2C%20and%20urgent%20needs%20are%20addressed.%22%2C%22date%22%3A%222023-09-21%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1002%5C%2Fpssa.202300170%22%2C%22ISSN%22%3A%221862-6300%2C%201862-6319%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fonlinelibrary.wiley.com%5C%2Fdoi%5C%2F10.1002%5C%2Fpssa.202300170%22%2C%22collections%22%3A%5B%227WAEICCJ%22%5D%2C%22dateModified%22%3A%222024-01-24T11%3A04%3A22Z%22%7D%7D%2C%7B%22key%22%3A%224HIPTQFV%22%2C%22library%22%3A%7B%22id%22%3A11840969%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22M%5Cu00fcller%20et%20al.%22%2C%22parsedDate%22%3A%222023-09-19%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EM%26%23xFC%3Bller%2C%20S.%2C%20Sparka%2C%20J.%20A.%2C%20Kuban%2C%20M.%2C%20Draxl%2C%20C.%2C%20%26amp%3B%20Grunske%2C%20L.%20%282023%29.%20Grammar%26%23×2010%3Bbased%20fuzzing%20of%20data%20integration%20parsers%20in%20computational%20materials%20science.%20%3Ci%3ESoftware%3A%20Practice%20and%20Experience%3C%5C%2Fi%3E%2C%20%3Ci%3E54%3C%5C%2Fi%3E%282%29%2C%20208%26%23×2013%3B224.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1002%5C%2Fspe.3266%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1002%5C%2Fspe.3266%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Grammar%5Cu2010based%20fuzzing%20of%20data%20integration%20parsers%20in%20computational%20materials%20science%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Sebastian%22%2C%22lastName%22%3A%22M%5Cu00fcller%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jan%20Arne%22%2C%22lastName%22%3A%22Sparka%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Martin%22%2C%22lastName%22%3A%22Kuban%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Claudia%22%2C%22lastName%22%3A%22Draxl%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Lars%22%2C%22lastName%22%3A%22Grunske%22%7D%5D%2C%22abstractNote%22%3A%22Abstract%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20Context%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20Computational%20materials%20science%20%28CMS%29%20focuses%20on%20in%20silico%20experiments%20to%20compute%20the%20properties%20of%20known%20and%20novel%20materials%2C%20where%20many%20software%20packages%20are%20used%20in%20the%20community.%20The%20NOMAD%20Laboratory%20%28Draxl%20C%2C%20Scheffler%29%20offers%20to%20store%20the%20input%20and%20output%20files%20in%20its%20FAIR%20data%20repository.%20Since%20the%20file%20formats%20of%20these%20software%20packages%20are%20non%5Cu2010standardized%2C%20parsers%20are%20used%20to%20provide%20the%20results%20in%20a%20normalized%20format.%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20Objective%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20The%20main%20goal%20of%20this%20article%20is%20to%20report%20experience%20and%20findings%20of%20using%20grammar%5Cu2010based%20fuzzing%20on%20these%20parsers.%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20Method%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20We%20have%20constructed%20an%20input%20grammar%20for%20four%20common%20software%20packages%20in%20the%20CMS%20domain%20and%20performed%20an%20experimental%20evaluation%20on%20the%20capabilities%20of%20grammar%5Cu2010based%20fuzzing%20to%20detect%20failures%20in%20the%20Novel%20Materials%20Discovery%20%28NOMAD%29%20parsers.%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20Results%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20With%20our%20approach%2C%20we%20were%20able%20to%20identify%20three%20unique%20critical%20bugs%20concerning%20service%20availability%2C%20as%20well%20as%20several%20additional%20syntactic%2C%20semantic%2C%20logical%2C%20and%20downstream%20bugs%20in%20the%20investigated%20NOMAD%20parsers.%20We%20reported%20all%20issues%20to%20the%20developer%20team%20prior%20to%20publication.%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20Conclusion%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20Based%20on%20the%20experience%20gained%2C%20we%20can%20recommend%20grammar%5Cu2010based%20fuzzing%20also%20for%20other%20research%20software%20packages%20to%20improve%20the%20trust%20level%20in%20the%20correctness%20of%20the%20produced%20results.%22%2C%22date%22%3A%222023-09-19%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1002%5C%2Fspe.3266%22%2C%22ISSN%22%3A%220038-0644%2C%201097-024X%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fonlinelibrary.wiley.com%5C%2Fdoi%5C%2F10.1002%5C%2Fspe.3266%22%2C%22collections%22%3A%5B%227WAEICCJ%22%5D%2C%22dateModified%22%3A%222024-01-24T11%3A06%3A55Z%22%7D%7D%2C%7B%22key%22%3A%22HMNHH5K4%22%2C%22library%22%3A%7B%22id%22%3A11840969%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Li%20et%20al.%22%2C%22parsedDate%22%3A%222023-09-17%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3ELi%2C%20G.%2C%20Hu%2C%20Y.%2C%20Li%2C%20M.%2C%20Tang%2C%20Y.%2C%20Zhang%2C%20Z.%2C%20Musiienko%2C%20A.%2C%20Cao%2C%20Q.%2C%20Akhundova%2C%20F.%2C%20Li%2C%20J.%2C%20Prashanthan%2C%20K.%2C%20Yang%2C%20F.%2C%20Janasik%2C%20P.%2C%20Appiah%2C%20A.%20N.%20S.%2C%20Trofimov%2C%20S.%2C%20Livakas%2C%20N.%2C%20Zuo%2C%20S.%2C%20Wu%2C%20L.%2C%20Wang%2C%20L.%2C%20Yang%2C%20Y.%2C%20%26%23×2026%3B%20Abate%2C%20A.%20%282023%29.%20Managing%20Excess%20Lead%20Iodide%20with%20Functionalized%20Oxo%26%23×2010%3BGraphene%20Nanosheets%20for%20Stable%20Perovskite%20Solar%20Cells.%20%3Ci%3EAngewandte%20Chemie%20International%20Edition%3C%5C%2Fi%3E%2C%20%3Ci%3E62%3C%5C%2Fi%3E%2839%29%2C%20e202307395.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1002%5C%2Fanie.202307395%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1002%5C%2Fanie.202307395%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Managing%20Excess%20Lead%20Iodide%20with%20Functionalized%20Oxo%5Cu2010Graphene%20Nanosheets%20for%20Stable%20Perovskite%20Solar%20Cells%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Guixiang%22%2C%22lastName%22%3A%22Li%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Yalei%22%2C%22lastName%22%3A%22Hu%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Meng%22%2C%22lastName%22%3A%22Li%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Ying%22%2C%22lastName%22%3A%22Tang%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Zuhong%22%2C%22lastName%22%3A%22Zhang%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Artem%22%2C%22lastName%22%3A%22Musiienko%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Qing%22%2C%22lastName%22%3A%22Cao%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Fatima%22%2C%22lastName%22%3A%22Akhundova%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jinzhao%22%2C%22lastName%22%3A%22Li%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Karunanantharajah%22%2C%22lastName%22%3A%22Prashanthan%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Fengjiu%22%2C%22lastName%22%3A%22Yang%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Patryk%22%2C%22lastName%22%3A%22Janasik%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Augustine%20N.%20S.%22%2C%22lastName%22%3A%22Appiah%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Sergei%22%2C%22lastName%22%3A%22Trofimov%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Nikolaos%22%2C%22lastName%22%3A%22Livakas%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Shengnan%22%2C%22lastName%22%3A%22Zuo%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Luyan%22%2C%22lastName%22%3A%22Wu%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Luyao%22%2C%22lastName%22%3A%22Wang%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Yuqian%22%2C%22lastName%22%3A%22Yang%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Benjamin%22%2C%22lastName%22%3A%22Agyei%5Cu2010Tuffour%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Rowan%20W.%22%2C%22lastName%22%3A%22MacQueen%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Boris%22%2C%22lastName%22%3A%22Naydenov%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Thomas%22%2C%22lastName%22%3A%22Unold%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Eva%22%2C%22lastName%22%3A%22Unger%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Ece%22%2C%22lastName%22%3A%22Aktas%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Siegfried%22%2C%22lastName%22%3A%22Eigler%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Antonio%22%2C%22lastName%22%3A%22Abate%22%7D%5D%2C%22abstractNote%22%3A%22Abstract%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20Stability%20issues%20could%20prevent%20lead%20halide%20perovskite%20solar%20cells%20%28PSCs%29%20from%20commercialization%20despite%20it%20having%20a%20comparable%20power%20conversion%20efficiency%20%28PCE%29%20to%20silicon%20solar%20cells.%20Overcoming%20drawbacks%20affecting%20their%20long%5Cu2010term%20stability%20is%20gaining%20incremental%20importance.%20Excess%20lead%20iodide%20%28PbI%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%202%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%29%20causes%20perovskite%20degradation%2C%20although%20it%20aids%20in%20crystal%20growth%20and%20defect%20passivation.%20Herein%2C%20we%20synthesized%20functionalized%20oxo%5Cu2010graphene%20nanosheets%20%28Dec%5Cu2010oxoG%20NSs%29%20to%20effectively%20manage%20the%20excess%20PbI%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%202%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20.%20Dec%5Cu2010oxoG%20NSs%20provide%20anchoring%20sites%20to%20bind%20the%20excess%20PbI%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%202%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20and%20passivate%20perovskite%20grain%20boundaries%2C%20thereby%20reducing%20charge%20recombination%20loss%20and%20significantly%20boosting%20the%20extraction%20of%20free%20electrons.%20The%20inclusion%20of%20Dec%5Cu2010oxoG%20NSs%20leads%20to%20a%20PCE%20of%2023.7%5Cu2009%25%20in%20inverted%20%28p%5Cu2010i%5Cu2010n%29%20PSCs.%20The%20devices%20retain%2093.8%5Cu2009%25%20of%20their%20initial%20efficiency%20after%201%2C000%5Cu2005hours%20of%20tracking%20at%20maximum%20power%20points%20under%20continuous%20one%5Cu2010sun%20illumination%20and%20exhibit%20high%20stability%20under%20thermal%20and%20ambient%20conditions.%22%2C%22date%22%3A%222023-09-17%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1002%5C%2Fanie.202307395%22%2C%22ISSN%22%3A%221433-7851%2C%201521-3773%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fonlinelibrary.wiley.com%5C%2Fdoi%5C%2F10.1002%5C%2Fanie.202307395%22%2C%22collections%22%3A%5B%227WAEICCJ%22%5D%2C%22dateModified%22%3A%222024-01-24T13%3A02%3A25Z%22%7D%7D%2C%7B%22key%22%3A%22QWDBGRNK%22%2C%22library%22%3A%7B%22id%22%3A11840969%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Ghiringhelli%20et%20al.%22%2C%22parsedDate%22%3A%222023-09-14%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EGhiringhelli%2C%20L.%20M.%2C%20Baldauf%2C%20C.%2C%20Bereau%2C%20T.%2C%20Brockhauser%2C%20S.%2C%20Carbogno%2C%20C.%2C%20Chamanara%2C%20J.%2C%20Cozzini%2C%20S.%2C%20Curtarolo%2C%20S.%2C%20Draxl%2C%20C.%2C%20Dwaraknath%2C%20S.%2C%20Fekete%2C%20%26%23xC1%3B.%2C%20Kermode%2C%20J.%2C%20Koch%2C%20C.%20T.%2C%20K%26%23xFC%3Bhbach%2C%20M.%2C%20Ladines%2C%20A.%20N.%2C%20Lambrix%2C%20P.%2C%20Himmer%2C%20M.-O.%2C%20Levchenko%2C%20S.%20V.%2C%20Oliveira%2C%20M.%2C%20%26%23×2026%3B%20Scheffler%2C%20M.%20%282023%29.%20Shared%20metadata%20for%20data-centric%20materials%20science.%20%3Ci%3EScientific%20Data%3C%5C%2Fi%3E%2C%20%3Ci%3E10%3C%5C%2Fi%3E%281%29%2C%20626.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1038%5C%2Fs41597-023-02501-8%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1038%5C%2Fs41597-023-02501-8%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Shared%20metadata%20for%20data-centric%20materials%20science%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Luca%20M.%22%2C%22lastName%22%3A%22Ghiringhelli%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Carsten%22%2C%22lastName%22%3A%22Baldauf%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Tristan%22%2C%22lastName%22%3A%22Bereau%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Sandor%22%2C%22lastName%22%3A%22Brockhauser%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Christian%22%2C%22lastName%22%3A%22Carbogno%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Javad%22%2C%22lastName%22%3A%22Chamanara%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Stefano%22%2C%22lastName%22%3A%22Cozzini%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Stefano%22%2C%22lastName%22%3A%22Curtarolo%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Claudia%22%2C%22lastName%22%3A%22Draxl%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Shyam%22%2C%22lastName%22%3A%22Dwaraknath%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22%5Cu00c1d%5Cu00e1m%22%2C%22lastName%22%3A%22Fekete%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22James%22%2C%22lastName%22%3A%22Kermode%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Christoph%20T.%22%2C%22lastName%22%3A%22Koch%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Markus%22%2C%22lastName%22%3A%22K%5Cu00fchbach%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Alvin%20Noe%22%2C%22lastName%22%3A%22Ladines%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Patrick%22%2C%22lastName%22%3A%22Lambrix%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Maja-Olivia%22%2C%22lastName%22%3A%22Himmer%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Sergey%20V.%22%2C%22lastName%22%3A%22Levchenko%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Micael%22%2C%22lastName%22%3A%22Oliveira%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Adam%22%2C%22lastName%22%3A%22Michalchuk%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Ronald%20E.%22%2C%22lastName%22%3A%22Miller%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Berk%22%2C%22lastName%22%3A%22Onat%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Pasquale%22%2C%22lastName%22%3A%22Pavone%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Giovanni%22%2C%22lastName%22%3A%22Pizzi%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Benjamin%22%2C%22lastName%22%3A%22Regler%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Gian-Marco%22%2C%22lastName%22%3A%22Rignanese%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22J%5Cu00f6rg%22%2C%22lastName%22%3A%22Schaarschmidt%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Markus%22%2C%22lastName%22%3A%22Scheidgen%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Astrid%22%2C%22lastName%22%3A%22Schneidewind%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Tatyana%22%2C%22lastName%22%3A%22Sheveleva%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Chuanxun%22%2C%22lastName%22%3A%22Su%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Denis%22%2C%22lastName%22%3A%22Usvyat%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Omar%22%2C%22lastName%22%3A%22Valsson%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Christof%22%2C%22lastName%22%3A%22W%5Cu00f6ll%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Matthias%22%2C%22lastName%22%3A%22Scheffler%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%222023-09-14%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1038%5C%2Fs41597-023-02501-8%22%2C%22ISSN%22%3A%222052-4463%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fwww.nature.com%5C%2Farticles%5C%2Fs41597-023-02501-8%22%2C%22collections%22%3A%5B%227WAEICCJ%22%5D%2C%22dateModified%22%3A%222024-01-24T11%3A01%3A01Z%22%7D%7D%2C%7B%22key%22%3A%228D69TXE7%22%2C%22library%22%3A%7B%22id%22%3A11840969%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Juergensen%20et%20al.%22%2C%22parsedDate%22%3A%222023-09-12%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EJuergensen%2C%20S.%2C%20Kessens%2C%20M.%2C%20Berrezueta-Palacios%2C%20C.%2C%20Severin%2C%20N.%2C%20Ifland%2C%20S.%2C%20Rabe%2C%20J.%20P.%2C%20Mueller%2C%20N.%20S.%2C%20%26amp%3B%20Reich%2C%20S.%20%282023%29.%20Collective%20States%20in%20Molecular%20Monolayers%20on%202D%20Materials.%20%3Ci%3EACS%20Nano%3C%5C%2Fi%3E%2C%20%3Ci%3E17%3C%5C%2Fi%3E%2817%29%2C%2017350%26%23×2013%3B17358.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1021%5C%2Facsnano.3c05384%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1021%5C%2Facsnano.3c05384%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Collective%20States%20in%20Molecular%20Monolayers%20on%202D%20Materials%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Sabrina%22%2C%22lastName%22%3A%22Juergensen%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Moritz%22%2C%22lastName%22%3A%22Kessens%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Charlotte%22%2C%22lastName%22%3A%22Berrezueta-Palacios%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Nikolai%22%2C%22lastName%22%3A%22Severin%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Sumaya%22%2C%22lastName%22%3A%22Ifland%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22J%5Cu00fcrgen%20P.%22%2C%22lastName%22%3A%22Rabe%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Niclas%20S.%22%2C%22lastName%22%3A%22Mueller%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Stephanie%22%2C%22lastName%22%3A%22Reich%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%222023-09-12%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1021%5C%2Facsnano.3c05384%22%2C%22ISSN%22%3A%221936-0851%2C%201936-086X%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fpubs.acs.org%5C%2Fdoi%5C%2F10.1021%5C%2Facsnano.3c05384%22%2C%22collections%22%3A%5B%227WAEICCJ%22%5D%2C%22dateModified%22%3A%222024-01-24T12%3A49%3A28Z%22%7D%7D%2C%7B%22key%22%3A%22EKSAIDD9%22%2C%22library%22%3A%7B%22id%22%3A11840969%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Zhang%20and%20Pinna%22%2C%22parsedDate%22%3A%222023-09-12%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EZhang%2C%20W.%2C%20%26amp%3B%20Pinna%2C%20N.%20%282023%29.%20Integration%20of%20Noble%20Metal%20Nanocrystals%20in%20a%20Hollow%20Metal%26%23×2013%3BOrganic%20Framework%20Shell.%20%3Ci%3EChemistry%20of%20Materials%3C%5C%2Fi%3E%2C%20%3Ci%3E35%3C%5C%2Fi%3E%2817%29%2C%206799%26%23×2013%3B6807.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1021%5C%2Facs.chemmater.3c01112%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1021%5C%2Facs.chemmater.3c01112%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Integration%20of%20Noble%20Metal%20Nanocrystals%20in%20a%20Hollow%20Metal%5Cu2013Organic%20Framework%20Shell%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Wei%22%2C%22lastName%22%3A%22Zhang%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Nicola%22%2C%22lastName%22%3A%22Pinna%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%222023-09-12%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1021%5C%2Facs.chemmater.3c01112%22%2C%22ISSN%22%3A%220897-4756%2C%201520-5002%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fpubs.acs.org%5C%2Fdoi%5C%2F10.1021%5C%2Facs.chemmater.3c01112%22%2C%22collections%22%3A%5B%227WAEICCJ%22%5D%2C%22dateModified%22%3A%222024-01-24T12%3A44%3A19Z%22%7D%7D%2C%7B%22key%22%3A%223ERCRCAY%22%2C%22library%22%3A%7B%22id%22%3A11840969%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Saliba%20et%20al.%22%2C%22parsedDate%22%3A%222023-09-06%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3ESaliba%2C%20M.%2C%20Unger%2C%20E.%2C%20Etgar%2C%20L.%2C%20Luo%2C%20J.%2C%20%26amp%3B%20Jacobsson%2C%20T.%20J.%20%282023%29.%20A%20systematic%20discrepancy%20between%20the%20short%20circuit%20current%20and%20the%20integrated%20quantum%20efficiency%20in%20perovskite%20solar%20cells.%20%3Ci%3ENature%20Communications%3C%5C%2Fi%3E%2C%20%3Ci%3E14%3C%5C%2Fi%3E%281%29%2C%205445.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1038%5C%2Fs41467-023-41263-0%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1038%5C%2Fs41467-023-41263-0%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22A%20systematic%20discrepancy%20between%20the%20short%20circuit%20current%20and%20the%20integrated%20quantum%20efficiency%20in%20perovskite%20solar%20cells%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Michael%22%2C%22lastName%22%3A%22Saliba%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Eva%22%2C%22lastName%22%3A%22Unger%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Lioz%22%2C%22lastName%22%3A%22Etgar%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jingshan%22%2C%22lastName%22%3A%22Luo%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22T.%20Jesper%22%2C%22lastName%22%3A%22Jacobsson%22%7D%5D%2C%22abstractNote%22%3A%22Abstract%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20Halide%20perovskites%20solar%20cells%20are%20now%20approaching%20commercialisation.%20In%20this%20transition%20from%20academic%20research%20towards%20industrialisation%2C%20standardized%20testing%20protocols%20and%20reliable%20dissemination%20of%20performance%20metrics%20are%20crucial.%20In%20this%20study%2C%20we%20analyze%20data%20from%20over%2016%2C000%20publications%20in%20the%20Perovskite%20Database%20to%20investigate%20the%20assumed%20equality%20between%20the%20integrated%20external%20quantum%20efficiency%20and%20the%20short%20circuit%20current%20from%20JV%20measurements.%20We%20find%20a%20systematic%20discrepancy%20with%20the%20JV-values%20being%20on%20average%204%25%20larger.%20This%20discrepancy%20persists%20across%20time%2C%20perovskite%20composition%2C%20and%20device%20architecture%2C%20indicating%20the%20need%20to%20explore%20new%20perovskite%20physics%20and%20update%20reporting%20protocols%20and%20assumptions%20in%20the%20field.%22%2C%22date%22%3A%222023-09-06%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1038%5C%2Fs41467-023-41263-0%22%2C%22ISSN%22%3A%222041-1723%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fwww.nature.com%5C%2Farticles%5C%2Fs41467-023-41263-0%22%2C%22collections%22%3A%5B%227WAEICCJ%22%5D%2C%22dateModified%22%3A%222024-01-24T13%3A03%3A28Z%22%7D%7D%2C%7B%22key%22%3A%22P9PPQEQ8%22%2C%22library%22%3A%7B%22id%22%3A11840969%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Li%20et%20al.%22%2C%22parsedDate%22%3A%222023-09-01%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3ELi%2C%20J.%2C%20Dagar%2C%20J.%2C%20Shargaieva%2C%20O.%2C%20Maus%2C%20O.%2C%20Remec%2C%20M.%2C%20Emery%2C%20Q.%2C%20Khenkin%2C%20M.%2C%20Ulbrich%2C%20C.%2C%20Akhundova%2C%20F.%2C%20M%26%23xE1%3Brquez%2C%20J.%20A.%2C%20Unold%2C%20T.%2C%20Fenske%2C%20M.%2C%20Schultz%2C%20C.%2C%20Stegemann%2C%20B.%2C%20Al%26%23×2010%3BAshouri%2C%20A.%2C%20Albrecht%2C%20S.%2C%20Esteves%2C%20A.%20T.%2C%20Korte%2C%20L.%2C%20K%26%23xF6%3Bbler%2C%20H.%2C%20%26%23×2026%3B%20Unger%2C%20E.%20%282023%29.%20Ink%20Design%20Enabling%20Slot%26%23×2010%3BDie%20Coated%20Perovskite%20Solar%20Cells%20with%20%26gt%3B22%25%20Power%20Conversion%20Efficiency%2C%20Micro%26%23×2010%3BModules%2C%20and%201%20Year%20of%20Outdoor%20Performance%20Evaluation.%20%3Ci%3EAdvanced%20Energy%20Materials%3C%5C%2Fi%3E%2C%20%3Ci%3E13%3C%5C%2Fi%3E%2833%29%2C%202203898.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1002%5C%2Faenm.202203898%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1002%5C%2Faenm.202203898%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Ink%20Design%20Enabling%20Slot%5Cu2010Die%20Coated%20Perovskite%20Solar%20Cells%20with%20%3E22%25%20Power%20Conversion%20Efficiency%2C%20Micro%5Cu2010Modules%2C%20and%201%20Year%20of%20Outdoor%20Performance%20Evaluation%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jinzhao%22%2C%22lastName%22%3A%22Li%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Janardan%22%2C%22lastName%22%3A%22Dagar%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Oleksandra%22%2C%22lastName%22%3A%22Shargaieva%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Oliver%22%2C%22lastName%22%3A%22Maus%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Marco%22%2C%22lastName%22%3A%22Remec%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Quiterie%22%2C%22lastName%22%3A%22Emery%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Mark%22%2C%22lastName%22%3A%22Khenkin%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Carolin%22%2C%22lastName%22%3A%22Ulbrich%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Fatima%22%2C%22lastName%22%3A%22Akhundova%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jos%5Cu00e9%20A.%22%2C%22lastName%22%3A%22M%5Cu00e1rquez%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Thomas%22%2C%22lastName%22%3A%22Unold%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Markus%22%2C%22lastName%22%3A%22Fenske%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Christof%22%2C%22lastName%22%3A%22Schultz%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Bert%22%2C%22lastName%22%3A%22Stegemann%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Amran%22%2C%22lastName%22%3A%22Al%5Cu2010Ashouri%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Steve%22%2C%22lastName%22%3A%22Albrecht%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Alvaro%20Tejada%22%2C%22lastName%22%3A%22Esteves%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Lars%22%2C%22lastName%22%3A%22Korte%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Hans%22%2C%22lastName%22%3A%22K%5Cu00f6bler%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Antonio%22%2C%22lastName%22%3A%22Abate%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Daniel%20M.%22%2C%22lastName%22%3A%22T%5Cu00f6bbens%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Ivo%22%2C%22lastName%22%3A%22Zizak%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Emil%20J.%20W.%22%2C%22lastName%22%3A%22List%5Cu2010Kratochvil%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Rutger%22%2C%22lastName%22%3A%22Schlatmann%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Eva%22%2C%22lastName%22%3A%22Unger%22%7D%5D%2C%22abstractNote%22%3A%22Abstract%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20The%20next%20technological%20step%20in%20the%20exploration%20of%20metal%5Cu2010halide%20perovskite%20solar%20cells%20is%20the%20demonstration%20of%20larger%5Cu2010area%20device%20prototypes%20under%20outdoor%20operating%20conditions.%20The%20authors%20here%20demonstrate%20that%20when%20slot%5Cu2010die%20coating%20the%20halide%20perovskite%20layers%20on%20large%20areas%2C%20ribbing%20effects%20may%20occur%20but%20can%20be%20prevented%20by%20adjusting%20the%20precursor%20ink%27s%20rheological%20properties.%20For%20formamidinium%20lead%20triiodide%20%28FAPbI%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%203%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%29%20precursor%20inks%20based%20on%202%5Cu2010methoxyethanol%2C%20the%20ink%20viscosity%20is%20adjusted%20by%20adding%20acetonitrile%20%28ACN%29%20as%20a%20co%5Cu2010solvent%20leading%20to%20smooth%20FAPbI%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%203%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20thin%5Cu2010films%20with%20high%20quality%20and%20layer%20homogeneity.%20For%20an%20optimized%20content%20of%2046%20vol%25%20of%20the%20ACN%20co%5Cu2010solvent%2C%20a%20certified%20steady%5Cu2010state%20performance%20of%2022.3%25%20is%20achieved%20in%20p%5Cu2010i%5Cu2010n%20FAPbI%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%203%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu2010perovskite%20solar%20cells.%20Scaling%20devices%20to%20larger%20areas%20by%20making%20laser%20series%5Cu2010interconnected%20mini%5Cu2010modules%20of%2012.7%20cm%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%202%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%2C%20a%20power%20conversion%20efficiency%20of%2017.1%25%20is%20demonstrated.%20A%20full%20year%20of%20outdoor%20stability%20testing%20with%20continuous%20maximum%20power%20point%20tracking%20on%20encapsulated%20devices%20is%20performed%20and%20it%20is%20demonstrated%20that%20these%20devices%20maintain%20close%20to%20100%25%20of%20their%20initial%20performance%20during%20winter%20and%20spring%20followed%20by%20a%20significant%20performance%20decline%20during%20warmer%20summer%20months.%20This%20work%20highlights%20the%20importance%20of%20the%20real%5Cu2010condition%20evaluation%20of%20larger%20area%20device%20prototypes%20to%20validate%20the%20technological%20potential%20of%20halide%20perovskite%20photovoltaics.%22%2C%22date%22%3A%222023-09-01%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1002%5C%2Faenm.202203898%22%2C%22ISSN%22%3A%221614-6832%2C%201614-6840%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fonlinelibrary.wiley.com%5C%2Fdoi%5C%2F10.1002%5C%2Faenm.202203898%22%2C%22collections%22%3A%5B%227WAEICCJ%22%5D%2C%22dateModified%22%3A%222024-01-24T12%3A18%3A38Z%22%7D%7D%2C%7B%22key%22%3A%22JSD8VENF%22%2C%22library%22%3A%7B%22id%22%3A11840969%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Gavini%20et%20al.%22%2C%22parsedDate%22%3A%222023-09-01%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EGavini%2C%20V.%2C%20Baroni%2C%20S.%2C%20Blum%2C%20V.%2C%20Bowler%2C%20D.%20R.%2C%20Buccheri%2C%20A.%2C%20Chelikowsky%2C%20J.%20R.%2C%20Das%2C%20S.%2C%20Dawson%2C%20W.%2C%20Delugas%2C%20P.%2C%20Dogan%2C%20M.%2C%20Draxl%2C%20C.%2C%20Galli%2C%20G.%2C%20Genovese%2C%20L.%2C%20Giannozzi%2C%20P.%2C%20Giantomassi%2C%20M.%2C%20Gonze%2C%20X.%2C%20Govoni%2C%20M.%2C%20Gygi%2C%20F.%2C%20Gulans%2C%20A.%2C%20%26%23×2026%3B%20Perez%2C%20D.%20%282023%29.%20Roadmap%20on%20electronic%20structure%20codes%20in%20the%20exascale%20era.%20%3Ci%3EModelling%20and%20Simulation%20in%20Materials%20Science%20and%20Engineering%3C%5C%2Fi%3E%2C%20%3Ci%3E31%3C%5C%2Fi%3E%286%29%2C%20063301.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1088%5C%2F1361-651X%5C%2Facdf06%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1088%5C%2F1361-651X%5C%2Facdf06%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Roadmap%20on%20electronic%20structure%20codes%20in%20the%20exascale%20era%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Vikram%22%2C%22lastName%22%3A%22Gavini%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Stefano%22%2C%22lastName%22%3A%22Baroni%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Volker%22%2C%22lastName%22%3A%22Blum%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22David%20R%22%2C%22lastName%22%3A%22Bowler%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Alexander%22%2C%22lastName%22%3A%22Buccheri%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22James%20R%22%2C%22lastName%22%3A%22Chelikowsky%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Sambit%22%2C%22lastName%22%3A%22Das%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22William%22%2C%22lastName%22%3A%22Dawson%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Pietro%22%2C%22lastName%22%3A%22Delugas%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Mehmet%22%2C%22lastName%22%3A%22Dogan%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Claudia%22%2C%22lastName%22%3A%22Draxl%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Giulia%22%2C%22lastName%22%3A%22Galli%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Luigi%22%2C%22lastName%22%3A%22Genovese%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Paolo%22%2C%22lastName%22%3A%22Giannozzi%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Matteo%22%2C%22lastName%22%3A%22Giantomassi%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Xavier%22%2C%22lastName%22%3A%22Gonze%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Marco%22%2C%22lastName%22%3A%22Govoni%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Fran%5Cu00e7ois%22%2C%22lastName%22%3A%22Gygi%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Andris%22%2C%22lastName%22%3A%22Gulans%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22John%20M%22%2C%22lastName%22%3A%22Herbert%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Sebastian%22%2C%22lastName%22%3A%22Kokott%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Thomas%20D%22%2C%22lastName%22%3A%22K%5Cu00fchne%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Kai-Hsin%22%2C%22lastName%22%3A%22Liou%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Tsuyoshi%22%2C%22lastName%22%3A%22Miyazaki%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Phani%22%2C%22lastName%22%3A%22Motamarri%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Ayako%22%2C%22lastName%22%3A%22Nakata%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22John%20E%22%2C%22lastName%22%3A%22Pask%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Christian%22%2C%22lastName%22%3A%22Plessl%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Laura%20E%22%2C%22lastName%22%3A%22Ratcliff%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Ryan%20M%22%2C%22lastName%22%3A%22Richard%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Mariana%22%2C%22lastName%22%3A%22Rossi%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Robert%22%2C%22lastName%22%3A%22Schade%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Matthias%22%2C%22lastName%22%3A%22Scheffler%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Ole%22%2C%22lastName%22%3A%22Sch%5Cu00fctt%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Phanish%22%2C%22lastName%22%3A%22Suryanarayana%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Marc%22%2C%22lastName%22%3A%22Torrent%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Lionel%22%2C%22lastName%22%3A%22Truflandier%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Theresa%20L%22%2C%22lastName%22%3A%22Windus%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Qimen%22%2C%22lastName%22%3A%22Xu%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Victor%20W-Z%22%2C%22lastName%22%3A%22Yu%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22D%22%2C%22lastName%22%3A%22Perez%22%7D%5D%2C%22abstractNote%22%3A%22Abstract%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20Electronic%20structure%20calculations%20have%20been%20instrumental%20in%20providing%20many%20important%20insights%20into%20a%20range%20of%20physical%20and%20chemical%20properties%20of%20various%20molecular%20and%20solid-state%20systems.%20Their%20importance%20to%20various%20fields%2C%20including%20materials%20science%2C%20chemical%20sciences%2C%20computational%20chemistry%2C%20and%20device%20physics%2C%20is%20underscored%20by%20the%20large%20fraction%20of%20available%20public%20supercomputing%20resources%20devoted%20to%20these%20calculations.%20As%20we%20enter%20the%20exascale%20era%2C%20exciting%20new%20opportunities%20to%20increase%20simulation%20numbers%2C%20sizes%2C%20and%20accuracies%20present%20themselves.%20In%20order%20to%20realize%20these%20promises%2C%20the%20community%20of%20electronic%20structure%20software%20developers%20will%20however%20first%20have%20to%20tackle%20a%20number%20of%20challenges%20pertaining%20to%20the%20efficient%20use%20of%20new%20architectures%20that%20will%20rely%20heavily%20on%20massive%20parallelism%20and%20hardware%20accelerators.%20This%20roadmap%20provides%20a%20broad%20overview%20of%20the%20state-of-the-art%20in%20electronic%20structure%20calculations%20and%20of%20the%20various%20new%20directions%20being%20pursued%20by%20the%20community.%20It%20covers%2014%20electronic%20structure%20codes%2C%20presenting%20their%20current%20status%2C%20their%20development%20priorities%20over%20the%20next%20five%20years%2C%20and%20their%20plans%20towards%20tackling%20the%20challenges%20and%20leveraging%20the%20opportunities%20presented%20by%20the%20advent%20of%20exascale%20computing.%22%2C%22date%22%3A%222023-09-01%22%2C%22language%22%3A%22%22%2C%22DOI%22%3A%2210.1088%5C%2F1361-651X%5C%2Facdf06%22%2C%22ISSN%22%3A%220965-0393%2C%201361-651X%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fiopscience.iop.org%5C%2Farticle%5C%2F10.1088%5C%2F1361-651X%5C%2Facdf06%22%2C%22collections%22%3A%5B%227WAEICCJ%22%5D%2C%22dateModified%22%3A%222024-01-24T10%3A59%3A33Z%22%7D%7D%2C%7B%22key%22%3A%224HX9SKSC%22%2C%22library%22%3A%7B%22id%22%3A11840969%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Kim%20et%20al.%22%2C%22parsedDate%22%3A%222023-08-30%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EKim%2C%20Y.%2C%20Gensler%2C%20M.%2C%20Kim%2C%20J.%2C%20Janietz%2C%20S.%2C%20V%26%23xF6%3Blkel%2C%20C.%2C%20Boeffel%2C%20C.%2C%20Solak%2C%20S.%2C%20Hermerschmidt%2C%20F.%2C%20List-Kratochvil%2C%20E.%20J.%20W.%2C%20Han%2C%20C.%20J.%2C%20Oh%2C%20M.%20S.%2C%20Park%2C%20K.%2C%20%26amp%3B%20Wedel%2C%20A.%20%282023%29.%2069%26%23×2010%3B4%3A%20%3Ci%3ELate%26%23×2010%3BNews%20Paper%3A%3C%5C%2Fi%3E%20Quantum%20Dot%5C%2FOrganic%20Nanohybrids%20for%20InP%26%23×2010%3Bbased%20QD%26%23×2010%3BLEDs%20and%20Their%20Patterning%20via%20Electrohydrodynamic%20Jet%20Printing.%20%3Ci%3ESID%20Symposium%20Digest%20of%20Technical%20Papers%3C%5C%2Fi%3E%2C%20%3Ci%3E54%3C%5C%2Fi%3E%281%29%2C%20982%26%23×2013%3B985.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1002%5C%2Fsdtp.16732%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1002%5C%2Fsdtp.16732%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%2269%5Cu20104%3A%20%3Ci%3ELate%5Cu2010News%20Paper%3A%3C%5C%2Fi%3E%20Quantum%20Dot%5C%2FOrganic%20Nanohybrids%20for%20InP%5Cu2010based%20QD%5Cu2010LEDs%20and%20Their%20Patterning%20via%20Electrohydrodynamic%20Jet%20Printing%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Yohan%22%2C%22lastName%22%3A%22Kim%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Manuel%22%2C%22lastName%22%3A%22Gensler%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jiyong%22%2C%22lastName%22%3A%22Kim%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Silvia%22%2C%22lastName%22%3A%22Janietz%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Charlotte%22%2C%22lastName%22%3A%22V%5Cu00f6lkel%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Christine%22%2C%22lastName%22%3A%22Boeffel%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Selen%22%2C%22lastName%22%3A%22Solak%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Felix%22%2C%22lastName%22%3A%22Hermerschmidt%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Emil%20J.W.%22%2C%22lastName%22%3A%22List-Kratochvil%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Chul%20Jong%22%2C%22lastName%22%3A%22Han%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Min%20Suk%22%2C%22lastName%22%3A%22Oh%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Kyoungwon%22%2C%22lastName%22%3A%22Park%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Armin%22%2C%22lastName%22%3A%22Wedel%22%7D%5D%2C%22abstractNote%22%3A%22Quantum%20dot%20%28QD%29%5C%2Forganic%20nanohybrids%20were%20developed%20to%20be%20utilized%20in%20electrohydrodynamic%20%28EHD%29%20jet%5Cu2010printed%20QD%5Cu2010LEDs.%20Side%5Cu2010chain%20copolymer%20with%20elongated%20aliphatic%20thiol%20groups%20was%20newly%20introduced%20into%20the%20nanohybrids%20to%20coordinate%20the%20polymer%20chains%20with%20the%20QD%20surface.%20The%20QD%5Cu2010LEDs%20with%20the%20nonohybrids%20showed%20a%20higher%20current%20efficiency%20over%204%5Cu2010fold%20than%20that%20with%20a%20QD%5Cu2010only%20active%20layer.%20EHD%20jet%5Cu2010printing%20was%20independently%20performed%20up%20to%205%5Cu00b5m%20pixel%20pitch%20on%20a%20substrate%2C%20resulting%20in%20a%20resolution%20of%20ca.%205%2C080%20pixels%20per%20inch.%22%2C%22date%22%3A%222023-08-30%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1002%5C%2Fsdtp.16732%22%2C%22ISSN%22%3A%220097-966X%2C%202168-0159%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fsid.onlinelibrary.wiley.com%5C%2Fdoi%5C%2F10.1002%5C%2Fsdtp.16732%22%2C%22collections%22%3A%5B%227WAEICCJ%22%5D%2C%22dateModified%22%3A%222024-01-24T12%3A08%3A29Z%22%7D%7D%2C%7B%22key%22%3A%22T87II6KE%22%2C%22library%22%3A%7B%22id%22%3A11840969%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Niu%20et%20al.%22%2C%22parsedDate%22%3A%222023-08-23%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3ENiu%2C%20W.%2C%20Fu%2C%20Y.%2C%20Serra%2C%20G.%2C%20Liu%2C%20K.%2C%20Droste%2C%20J.%2C%20Lee%2C%20Y.%2C%20Ling%2C%20Z.%2C%20Xu%2C%20F.%2C%20Cojal%20Gonz%26%23xE1%3Blez%2C%20J.%20D.%2C%20Lucotti%2C%20A.%2C%20Rabe%2C%20J.%20P.%2C%20Ryan%20Hansen%2C%20M.%2C%20Pisula%2C%20W.%2C%20Blom%2C%20P.%20W.%20M.%2C%20Palma%2C%20C.%2C%20Tommasini%2C%20M.%2C%20Mai%2C%20Y.%2C%20Ma%2C%20J.%2C%20%26amp%3B%20Feng%2C%20X.%20%282023%29.%20Bottom%26%23×2010%3Bup%20Solution%20Synthesis%20of%20Graphene%20Nanoribbons%20with%20Precisely%20Engineered%20Nanopores.%20%3Ci%3EAngewandte%20Chemie%20International%20Edition%3C%5C%2Fi%3E%2C%20%3Ci%3E62%3C%5C%2Fi%3E%2835%29%2C%20e202305737.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1002%5C%2Fanie.202305737%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1002%5C%2Fanie.202305737%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Bottom%5Cu2010up%20Solution%20Synthesis%20of%20Graphene%20Nanoribbons%20with%20Precisely%20Engineered%20Nanopores%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Wenhui%22%2C%22lastName%22%3A%22Niu%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Yubin%22%2C%22lastName%22%3A%22Fu%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Gianluca%22%2C%22lastName%22%3A%22Serra%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Kun%22%2C%22lastName%22%3A%22Liu%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22J%5Cu00f6rn%22%2C%22lastName%22%3A%22Droste%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Yeonju%22%2C%22lastName%22%3A%22Lee%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Zhitian%22%2C%22lastName%22%3A%22Ling%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Fugui%22%2C%22lastName%22%3A%22Xu%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jos%5Cu00e9%20D.%22%2C%22lastName%22%3A%22Cojal%20Gonz%5Cu00e1lez%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Andrea%22%2C%22lastName%22%3A%22Lucotti%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22J%5Cu00fcrgen%20P.%22%2C%22lastName%22%3A%22Rabe%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Michael%22%2C%22lastName%22%3A%22Ryan%20Hansen%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Wojciech%22%2C%22lastName%22%3A%22Pisula%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Paul%20W.%20M.%22%2C%22lastName%22%3A%22Blom%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Carlos%5Cu2010Andres%22%2C%22lastName%22%3A%22Palma%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Matteo%22%2C%22lastName%22%3A%22Tommasini%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Yiyong%22%2C%22lastName%22%3A%22Mai%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Ji%22%2C%22lastName%22%3A%22Ma%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Xinliang%22%2C%22lastName%22%3A%22Feng%22%7D%5D%2C%22abstractNote%22%3A%22Abstract%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20The%20incorporation%20of%20nanopores%20into%20graphene%20nanostructures%20has%20been%20demonstrated%20as%20an%20efficient%20tool%20in%20tuning%20their%20band%20gaps%20and%20electronic%20structures.%20However%2C%20precisely%20embedding%20the%20uniform%20nanopores%20into%20graphene%20nanoribbons%20%28GNRs%29%20at%20the%20atomic%20level%20remains%20underdeveloped%20especially%20for%20in%5Cu2010solution%20synthesis%20due%20to%20the%20lack%20of%20efficient%20synthetic%20strategies.%20Herein%20we%20report%20the%20first%20case%20of%20solution%5Cu2010synthesized%20porous%20GNR%20%28%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20pGNR%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%29%20with%20a%20fully%20conjugated%20backbone%20via%20the%20efficient%20Scholl%20reaction%20of%20tailor%5Cu2010made%20polyphenylene%20precursor%20%28%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20P1%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%29%20bearing%20pre%5Cu2010installed%20hexagonal%20nanopores.%20The%20resultant%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20pGNR%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20features%20periodic%20subnanometer%20pores%20with%20a%20uniform%20diameter%20of%200.6%5Cu2005nm%20and%20an%20adjacent%5Cu2010pores%5Cu2010distance%20of%201.7%5Cu2005nm.%20To%20solidify%20our%20design%20strategy%2C%20two%20porous%20model%20compounds%20%28%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%201%5Cu2009a%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%2C%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%201%5Cu2009b%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%29%20containing%20the%20same%20pore%20size%20as%20the%20shortcuts%20of%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20pGNR%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%2C%20are%20successfully%20synthesized.%20The%20chemical%20structure%20and%20photophysical%20properties%20of%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20pGNR%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20are%20investigated%20by%20various%20spectroscopic%20analyses.%20Notably%2C%20the%20embedded%20periodic%20nanopores%20largely%20reduce%20the%20%5Cu03c0%5Cu2010conjugation%20degree%20and%20alleviate%20the%20inter%5Cu2010ribbon%20%5Cu03c0%5Cu2013%5Cu03c0%20interactions%2C%20compared%20to%20the%20nonporous%20GNRs%20with%20similar%20widths%2C%20affording%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20pGNR%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20with%20a%20notably%20enlarged%20band%20gap%20and%20enhanced%20liquid%5Cu2010phase%20processability.%22%2C%22date%22%3A%222023-08-23%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1002%5C%2Fanie.202305737%22%2C%22ISSN%22%3A%221433-7851%2C%201521-3773%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fonlinelibrary.wiley.com%5C%2Fdoi%5C%2F10.1002%5C%2Fanie.202305737%22%2C%22collections%22%3A%5B%227WAEICCJ%22%5D%2C%22dateModified%22%3A%222024-01-24T12%3A48%3A57Z%22%7D%7D%2C%7B%22key%22%3A%224INUG6UH%22%2C%22library%22%3A%7B%22id%22%3A11840969%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Fabozzi%20et%20al.%22%2C%22parsedDate%22%3A%222023-08-23%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EFabozzi%2C%20F.%20G.%2C%20Severin%2C%20N.%2C%20Rabe%2C%20J.%20P.%2C%20%26amp%3B%20Hecht%2C%20S.%20%282023%29.%20Room%20Temperature%20On-Surface%20Synthesis%20of%20a%20Vinylene-Linked%20Single%20Layer%20Covalent%20Organic%20Framework.%20%3Ci%3EJournal%20of%20the%20American%20Chemical%20Society%3C%5C%2Fi%3E%2C%20%3Ci%3E145%3C%5C%2Fi%3E%2833%29%2C%2018205%26%23×2013%3B18209.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1021%5C%2Fjacs.3c04730%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1021%5C%2Fjacs.3c04730%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Room%20Temperature%20On-Surface%20Synthesis%20of%20a%20Vinylene-Linked%20Single%20Layer%20Covalent%20Organic%20Framework%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Filippo%20Giovanni%22%2C%22lastName%22%3A%22Fabozzi%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Nikolai%22%2C%22lastName%22%3A%22Severin%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22J%5Cu00fcrgen%20P.%22%2C%22lastName%22%3A%22Rabe%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Stefan%22%2C%22lastName%22%3A%22Hecht%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%222023-08-23%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1021%5C%2Fjacs.3c04730%22%2C%22ISSN%22%3A%220002-7863%2C%201520-5126%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fpubs.acs.org%5C%2Fdoi%5C%2F10.1021%5C%2Fjacs.3c04730%22%2C%22collections%22%3A%5B%227WAEICCJ%22%5D%2C%22dateModified%22%3A%222024-01-24T11%3A17%3A15Z%22%7D%7D%2C%7B%22key%22%3A%2284XUJL7G%22%2C%22library%22%3A%7B%22id%22%3A11840969%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Wang%20et%20al.%22%2C%22parsedDate%22%3A%222023-08-22%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EWang%2C%20J.%2C%20Russo%2C%20P.%20A.%2C%20%26amp%3B%20Pinna%2C%20N.%20%282023%29.%20Impact%20of%20Surface%20Hydroxyl%20Groups%20on%20CuO%20Film%20Growth%20by%20Atomic%20Layer%20Deposition.%20%3Ci%3ELangmuir%3C%5C%2Fi%3E%2C%20%3Ci%3E39%3C%5C%2Fi%3E%2833%29%2C%2011603%26%23×2013%3B11609.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1021%5C%2Facs.langmuir.3c01109%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1021%5C%2Facs.langmuir.3c01109%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Impact%20of%20Surface%20Hydroxyl%20Groups%20on%20CuO%20Film%20Growth%20by%20Atomic%20Layer%20Deposition%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jiao%22%2C%22lastName%22%3A%22Wang%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Patr%5Cu00edcia%20A.%22%2C%22lastName%22%3A%22Russo%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Nicola%22%2C%22lastName%22%3A%22Pinna%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%222023-08-22%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1021%5C%2Facs.langmuir.3c01109%22%2C%22ISSN%22%3A%220743-7463%2C%201520-5827%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fpubs.acs.org%5C%2Fdoi%5C%2F10.1021%5C%2Facs.langmuir.3c01109%22%2C%22collections%22%3A%5B%227WAEICCJ%22%5D%2C%22dateModified%22%3A%222024-01-24T12%3A43%3A43Z%22%7D%7D%2C%7B%22key%22%3A%22GMM5KN97%22%2C%22library%22%3A%7B%22id%22%3A11840969%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Taffelli%20et%20al.%22%2C%22parsedDate%22%3A%222023-08-04%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3ETaffelli%2C%20A.%2C%20Heyl%2C%20M.%2C%20Favaro%2C%20M.%2C%20Dir%26%23xE8%3B%2C%20S.%2C%20Pancheri%2C%20L.%2C%20List-Kratochvil%2C%20E.%20J.%20W.%2C%20Quaranta%2C%20A.%2C%20%26amp%3B%20Ligorio%2C%20G.%20%282023%29.%20Demonstrating%20the%20high%20sensitivity%20of%20MoS2%20monolayers%20in%20direct%20x-ray%20detectors.%20%3Ci%3EAPL%20Materials%3C%5C%2Fi%3E%2C%20%3Ci%3E11%3C%5C%2Fi%3E%288%29%2C%20081101.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1063%5C%2F5.0151794%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1063%5C%2F5.0151794%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Demonstrating%20the%20high%20sensitivity%20of%20MoS2%20monolayers%20in%20direct%20x-ray%20detectors%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Alberto%22%2C%22lastName%22%3A%22Taffelli%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Max%22%2C%22lastName%22%3A%22Heyl%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Matteo%22%2C%22lastName%22%3A%22Favaro%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Sandra%22%2C%22lastName%22%3A%22Dir%5Cu00e8%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Lucio%22%2C%22lastName%22%3A%22Pancheri%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Emil%20J.%20W.%22%2C%22lastName%22%3A%22List-Kratochvil%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Alberto%22%2C%22lastName%22%3A%22Quaranta%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Giovanni%22%2C%22lastName%22%3A%22Ligorio%22%7D%5D%2C%22abstractNote%22%3A%22Two-dimensional%20transition%20metal%20dichalcogenides%20%28TMDCs%29%20are%20demonstrated%20to%20be%20appealing%20semiconductors%20for%20optoelectronic%20applications%2C%20thanks%20to%20their%20remarkable%20properties%20in%20the%20ultraviolet-visible%20spectral%20range.%20Interestingly%2C%20TMDCs%20have%20not%20yet%20been%20characterized%20when%20exposed%20to%20x%20rays%2C%20although%20they%20would%20be%20ideal%20candidates%20for%20optoelectronic%20applications%20in%20this%20spectral%20range.%20They%20benefit%20from%20the%20high%20cross%20section%20of%20the%20constituent%20heavy%20atoms%2C%20while%20keeping%20the%20absorption%20very%20low%2C%20due%20to%20the%20ultrathin%20structure%20of%20the%20film.%20This%20encourages%20the%20development%20of%20photodetectors%20based%20on%20TMDCs%20for%20several%20applications%20dealing%20with%20x%20rays%2C%20such%20as%20radioprotection%2C%20medical%20treatments%2C%20and%20diagnosis.%20Given%20the%20atomic%20thickness%20of%20TMDCs%2C%20they%20can%20be%20expected%20to%20perform%20well%20at%20low%20dose%20measurements%20with%20minimal%20perturbation%20of%20the%20radiation%20beam%2C%20which%20is%20required%20for%20in%20vivo%20applications.%20In%20this%20paper%2C%20the%20use%20of%20TMDCs%20as%20active%20materials%20for%20direct%20x-ray%20detection%20is%20demonstrated%2C%20using%20a%20photodetector%20based%20on%20a%20MoS2%20monolayer%20%281L-MoS2%29.%20The%20detector%20shows%20a%20response%20to%20x%20rays%20in%20the%20range%20of%20101%5Cu2013102%5Cu00a0keV%2C%20at%20dose%20rates%20as%20low%20as%20fractions%20of%20mGy%5C%2Fs.%20The%20sensitivity%20of%201L-MoS2%20reaches%20values%20in%20the%20range%20of%20108%5Cu2013109%5Cu00b5C%20Gy%5Cu22121%5Cu00a0cm%5Cu22123%2C%20overcoming%20the%20values%20reported%20for%20most%20of%20the%20organic%20and%20inorganic%20materials.%20To%20improve%20the%20x-ray%20photoresponse%20even%20further%2C%20the%201L-MoS2%20was%20coupled%20with%20a%20polymeric%20film%20integrating%20a%20scintillator%20based%20on%20terbium-doped%20gadolinium%20oxysulfide%20%28Gd2O2S%3ATb%29.%20The%20resulting%20signal%20was%20three%20times%20larger%2C%20enabled%20by%20the%20indirect%20x%20ray%20to%20visible%20photoconversion%20mechanism.%20This%20paper%20might%20pave%20the%20way%20toward%20the%20production%20of%20ultrathin%20real-time%20dosimeters%20for%20in%20vivo%20applications.%22%2C%22date%22%3A%222023-08-04%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1063%5C%2F5.0151794%22%2C%22ISSN%22%3A%222166-532X%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fpubs.aip.org%5C%2Fapm%5C%2Farticle%5C%2F11%5C%2F8%5C%2F081101%5C%2F2905611%5C%2FDemonstrating-the-high-sensitivity-of-MoS2%22%2C%22collections%22%3A%5B%227WAEICCJ%22%5D%2C%22dateModified%22%3A%222024-01-24T12%3A17%3A54Z%22%7D%7D%2C%7B%22key%22%3A%22PDX3HFYE%22%2C%22library%22%3A%7B%22id%22%3A11840969%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Huang%20and%20Hecht%22%2C%22parsedDate%22%3A%222023-08-01%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EHuang%2C%20C.%20%28Dennis%29%2C%20%26amp%3B%20Hecht%2C%20S.%20%282023%29.%20A%20Blueprint%20for%20Transforming%20Indigos%20to%20Photoresponsive%20Molecular%20Tools.%20%3Ci%3EChemistry%20%26%23×2013%3B%20A%20European%20Journal%3C%5C%2Fi%3E%2C%20%3Ci%3E29%3C%5C%2Fi%3E%2843%29%2C%20e202300981.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1002%5C%2Fchem.202300981%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1002%5C%2Fchem.202300981%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22A%20Blueprint%20for%20Transforming%20Indigos%20to%20Photoresponsive%20Molecular%20Tools%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Chung%5Cu2010Yang%20%28Dennis%29%22%2C%22lastName%22%3A%22Huang%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Stefan%22%2C%22lastName%22%3A%22Hecht%22%7D%5D%2C%22abstractNote%22%3A%22Abstract%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20Indigo%2C%20one%20of%20the%20most%20ancient%20and%20abundant%20dyes%20in%20human%20history%2C%20has%20recently%20emerged%20as%20a%20potential%20functional%20motif%20due%20to%20its%20intriguing%20photochemical%20properties.%20This%20review%20aims%20to%20provide%20insights%20into%20both%20the%20preparation%20of%20these%20molecules%20and%20their%20utilization%20in%20molecular%20systems.%20First%2C%20the%20synthesis%20of%20the%20indigo%20core%20as%20well%20as%20available%20methods%20to%20derivatize%20indigo%20are%20described%20to%20outline%20synthetic%20strategies%20to%20build%20the%20desired%20molecular%20structures.%20Then%2C%20the%20photochemical%20behavior%20of%20indigos%20is%20discussed%2C%20with%20particular%20focus%20on%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20E%5Cu2010Z%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20photoisomerization%20and%20photoinduced%20electron%20transfer.%20Connections%20between%20the%20molecular%20structures%20and%20their%20photochemical%20properties%20are%20highlighted%20and%20serve%20as%20guiding%20principles%20for%20designing%20indigos%20to%20be%20applied%20as%20photoresponsive%20tools.%22%2C%22date%22%3A%222023-08-01%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1002%5C%2Fchem.202300981%22%2C%22ISSN%22%3A%220947-6539%2C%201521-3765%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fchemistry-europe.onlinelibrary.wiley.com%5C%2Fdoi%5C%2F10.1002%5C%2Fchem.202300981%22%2C%22collections%22%3A%5B%227WAEICCJ%22%5D%2C%22dateModified%22%3A%222024-01-24T11%3A15%3A36Z%22%7D%7D%2C%7B%22key%22%3A%22PESN28BK%22%2C%22library%22%3A%7B%22id%22%3A11840969%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Shen%20et%20al.%22%2C%22parsedDate%22%3A%222023-07-27%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EShen%2C%20X.%2C%20Gallant%2C%20B.%20M.%2C%20Holzhey%2C%20P.%2C%20Smith%2C%20J.%20A.%2C%20Elmestekawy%2C%20K.%20A.%2C%20Yuan%2C%20Z.%2C%20Rathnayake%2C%20P.%20V.%20G.%20M.%2C%20Bernardi%2C%20S.%2C%20Dasgupta%2C%20A.%2C%20Kasparavicius%2C%20E.%2C%20Malinauskas%2C%20T.%2C%20Caprioglio%2C%20P.%2C%20Shargaieva%2C%20O.%2C%20Lin%2C%20Y.%2C%20McCarthy%2C%20M.%20M.%2C%20Unger%2C%20E.%2C%20Getautis%2C%20V.%2C%20Widmer%26%23×2010%3BCooper%2C%20A.%2C%20Herz%2C%20L.%20M.%2C%20%26amp%3B%20Snaith%2C%20H.%20J.%20%282023%29.%20Chloride%26%23×2010%3BBased%20Additive%20Engineering%20for%20Efficient%20and%20Stable%20Wide%26%23×2010%3BBandgap%20Perovskite%20Solar%20Cells.%20%3Ci%3EAdvanced%20Materials%3C%5C%2Fi%3E%2C%20%3Ci%3E35%3C%5C%2Fi%3E%2830%29%2C%202211742.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1002%5C%2Fadma.202211742%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1002%5C%2Fadma.202211742%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Chloride%5Cu2010Based%20Additive%20Engineering%20for%20Efficient%20and%20Stable%20Wide%5Cu2010Bandgap%20Perovskite%20Solar%20Cells%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Xinyi%22%2C%22lastName%22%3A%22Shen%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Benjamin%20M.%22%2C%22lastName%22%3A%22Gallant%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Philippe%22%2C%22lastName%22%3A%22Holzhey%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Joel%20A.%22%2C%22lastName%22%3A%22Smith%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Karim%20A.%22%2C%22lastName%22%3A%22Elmestekawy%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Zhongcheng%22%2C%22lastName%22%3A%22Yuan%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22P.%20V.%20G.%20M.%22%2C%22lastName%22%3A%22Rathnayake%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Stefano%22%2C%22lastName%22%3A%22Bernardi%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Akash%22%2C%22lastName%22%3A%22Dasgupta%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Ernestas%22%2C%22lastName%22%3A%22Kasparavicius%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Tadas%22%2C%22lastName%22%3A%22Malinauskas%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Pietro%22%2C%22lastName%22%3A%22Caprioglio%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Oleksandra%22%2C%22lastName%22%3A%22Shargaieva%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Yen%5Cu2010Hung%22%2C%22lastName%22%3A%22Lin%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Melissa%20M.%22%2C%22lastName%22%3A%22McCarthy%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Eva%22%2C%22lastName%22%3A%22Unger%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Vytautas%22%2C%22lastName%22%3A%22Getautis%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Asaph%22%2C%22lastName%22%3A%22Widmer%5Cu2010Cooper%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Laura%20M.%22%2C%22lastName%22%3A%22Herz%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Henry%20J.%22%2C%22lastName%22%3A%22Snaith%22%7D%5D%2C%22abstractNote%22%3A%22Abstract%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20Metal%20halide%20perovskite%20based%20tandem%20solar%20cells%20are%20promising%20to%20achieve%20power%20conversion%20efficiency%20beyond%20the%20theoretical%20limit%20of%20their%20single%5Cu2010junction%20counterparts.%20However%2C%20overcoming%20the%20significant%20open%5Cu2010circuit%20voltage%20deficit%20present%20in%20wide%5Cu2010bandgap%20perovskite%20solar%20cells%20remains%20a%20major%20hurdle%20for%20realizing%20efficient%20and%20stable%20perovskite%20tandem%20cells.%20Here%2C%20a%20holistic%20approach%20to%20overcoming%20challenges%20in%201.8%5Cu00a0eV%20perovskite%20solar%20cells%20is%20reported%20by%20engineering%20the%20perovskite%20crystallization%20pathway%20by%20means%20of%20chloride%20additives.%20In%20conjunction%20with%20employing%20a%20self%5Cu2010assembled%20monolayer%20as%20the%20hole%5Cu2010transport%20layer%2C%20an%20open%5Cu2010circuit%20voltage%20of%201.25%5Cu00a0V%20and%20a%20power%20conversion%20efficiency%20of%2017.0%25%20are%20achieved.%20The%20key%20role%20of%20methylammonium%20chloride%20addition%20is%20elucidated%20in%20facilitating%20the%20growth%20of%20a%20chloride%5Cu2010rich%20intermediate%20phase%20that%20directs%20crystallization%20of%20the%20desired%20cubic%20perovskite%20phase%20and%20induces%20more%20effective%20halide%20homogenization.%20The%20as%5Cu2010formed%201.8%5Cu00a0eV%20perovskite%20demonstrates%20suppressed%20halide%20segregation%20and%20improved%20optoelectronic%20properties.%22%2C%22date%22%3A%222023-07-27%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1002%5C%2Fadma.202211742%22%2C%22ISSN%22%3A%220935-9648%2C%201521-4095%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fonlinelibrary.wiley.com%5C%2Fdoi%5C%2F10.1002%5C%2Fadma.202211742%22%2C%22collections%22%3A%5B%227WAEICCJ%22%5D%2C%22dateModified%22%3A%222024-01-24T13%3A01%3A21Z%22%7D%7D%2C%7B%22key%22%3A%22838KD76Y%22%2C%22library%22%3A%7B%22id%22%3A11840969%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Haas%20et%20al.%22%2C%22parsedDate%22%3A%222023-07-22%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EHaas%2C%20B.%2C%20Boland%2C%20T.%20M.%2C%20Els%26%23xE4%3Bsser%2C%20C.%2C%20Singh%2C%20A.%20K.%2C%20March%2C%20K.%2C%20Barthel%2C%20J.%2C%20Koch%2C%20C.%20T.%2C%20%26amp%3B%20Rez%2C%20P.%20%282023%29.%20Atomic%20Resolution%20Mapping%20of%20Localized%20Phonon%20Modes%20in%20Silicon%20Grain%20Boundaries.%20%3Ci%3EMicroscopy%20and%20Microanalysis%3C%5C%2Fi%3E%2C%20%3Ci%3E29%3C%5C%2Fi%3E%28Supplement_1%29%2C%20618%26%23×2013%3B619.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1093%5C%2Fmicmic%5C%2Fozad067.300%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1093%5C%2Fmicmic%5C%2Fozad067.300%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Atomic%20Resolution%20Mapping%20of%20Localized%20Phonon%20Modes%20in%20Silicon%20Grain%20Boundaries%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Benedikt%22%2C%22lastName%22%3A%22Haas%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Tara%20M%22%2C%22lastName%22%3A%22Boland%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Christian%22%2C%22lastName%22%3A%22Els%5Cu00e4sser%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Arunima%20K%22%2C%22lastName%22%3A%22Singh%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Katia%22%2C%22lastName%22%3A%22March%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Juri%22%2C%22lastName%22%3A%22Barthel%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Christoph%20T%22%2C%22lastName%22%3A%22Koch%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Peter%22%2C%22lastName%22%3A%22Rez%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%222023-07-22%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1093%5C%2Fmicmic%5C%2Fozad067.300%22%2C%22ISSN%22%3A%221431-9276%2C%201435-8115%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Facademic.oup.com%5C%2Fmam%5C%2Farticle%5C%2F29%5C%2FSupplement_1%5C%2F618%5C%2F7228459%22%2C%22collections%22%3A%5B%227WAEICCJ%22%5D%2C%22dateModified%22%3A%222024-01-24T11%3A28%3A16Z%22%7D%7D%2C%7B%22key%22%3A%228PJTWWWG%22%2C%22library%22%3A%7B%22id%22%3A11840969%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Haas%20et%20al.%22%2C%22parsedDate%22%3A%222023-07-22%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EHaas%2C%20B.%2C%20Radtke%2C%20G.%2C%20Quillin%2C%20S.%20C.%2C%20Lovejoy%2C%20T.%20C.%2C%20Dellby%2C%20N.%2C%20Krivanek%2C%20O.%20L.%2C%20Hammud%2C%20A.%2C%20Schr%26%23xF6%3Bder%2C%20T.%2C%20%26amp%3B%20Koch%2C%20C.%20T.%20%282023%29.%20Mapping%20Phonon%20Dispersion%20Surfaces%20at%20Nanometer%20Scale.%20%3Ci%3EMicroscopy%20and%20Microanalysis%3C%5C%2Fi%3E%2C%20%3Ci%3E29%3C%5C%2Fi%3E%28Supplement_1%29%2C%20356%26%23×2013%3B357.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1093%5C%2Fmicmic%5C%2Fozad067.166%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1093%5C%2Fmicmic%5C%2Fozad067.166%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Mapping%20Phonon%20Dispersion%20Surfaces%20at%20Nanometer%20Scale%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Benedikt%22%2C%22lastName%22%3A%22Haas%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Guillaume%22%2C%22lastName%22%3A%22Radtke%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Steven%20C%22%2C%22lastName%22%3A%22Quillin%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Tracy%20C%22%2C%22lastName%22%3A%22Lovejoy%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Niklas%22%2C%22lastName%22%3A%22Dellby%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Ondrej%20L%22%2C%22lastName%22%3A%22Krivanek%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Adnan%22%2C%22lastName%22%3A%22Hammud%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Tim%22%2C%22lastName%22%3A%22Schr%5Cu00f6der%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Christoph%20T%22%2C%22lastName%22%3A%22Koch%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%222023-07-22%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1093%5C%2Fmicmic%5C%2Fozad067.166%22%2C%22ISSN%22%3A%221431-9276%2C%201435-8115%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Facademic.oup.com%5C%2Fmam%5C%2Farticle%5C%2F29%5C%2FSupplement_1%5C%2F356%5C%2F7228654%22%2C%22collections%22%3A%5B%227WAEICCJ%22%5D%2C%22dateModified%22%3A%222024-01-24T11%3A27%3A43Z%22%7D%7D%2C%7B%22key%22%3A%22V4GH4GMP%22%2C%22library%22%3A%7B%22id%22%3A11840969%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Haas%20et%20al.%22%2C%22parsedDate%22%3A%222023-07-12%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EHaas%2C%20B.%2C%20Boland%2C%20T.%20M.%2C%20Els%26%23xE4%3Bsser%2C%20C.%2C%20Singh%2C%20A.%20K.%2C%20March%2C%20K.%2C%20Barthel%2C%20J.%2C%20Koch%2C%20C.%20T.%2C%20%26amp%3B%20Rez%2C%20P.%20%282023%29.%20Atomic-Resolution%20Mapping%20of%20Localized%20Phonon%20Modes%20at%20Grain%20Boundaries.%20%3Ci%3ENano%20Letters%3C%5C%2Fi%3E%2C%20%3Ci%3E23%3C%5C%2Fi%3E%2813%29%2C%205975%26%23×2013%3B5980.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1021%5C%2Facs.nanolett.3c01089%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1021%5C%2Facs.nanolett.3c01089%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Atomic-Resolution%20Mapping%20of%20Localized%20Phonon%20Modes%20at%20Grain%20Boundaries%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Benedikt%22%2C%22lastName%22%3A%22Haas%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Tara%20M.%22%2C%22lastName%22%3A%22Boland%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Christian%22%2C%22lastName%22%3A%22Els%5Cu00e4sser%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Arunima%20K.%22%2C%22lastName%22%3A%22Singh%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Katia%22%2C%22lastName%22%3A%22March%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Juri%22%2C%22lastName%22%3A%22Barthel%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Christoph%20T.%22%2C%22lastName%22%3A%22Koch%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Peter%22%2C%22lastName%22%3A%22Rez%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%222023-07-12%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1021%5C%2Facs.nanolett.3c01089%22%2C%22ISSN%22%3A%221530-6984%2C%201530-6992%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fpubs.acs.org%5C%2Fdoi%5C%2F10.1021%5C%2Facs.nanolett.3c01089%22%2C%22collections%22%3A%5B%227WAEICCJ%22%5D%2C%22dateModified%22%3A%222024-01-24T11%3A26%3A56Z%22%7D%7D%2C%7B%22key%22%3A%22QI84ZAXJ%22%2C%22library%22%3A%7B%22id%22%3A11840969%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Mariotti%20et%20al.%22%2C%22parsedDate%22%3A%222023-07-07%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EMariotti%2C%20S.%2C%20K%26%23xF6%3Bhnen%2C%20E.%2C%20Scheler%2C%20F.%2C%20Sveinbj%26%23xF6%3Brnsson%2C%20K.%2C%20Zimmermann%2C%20L.%2C%20Piot%2C%20M.%2C%20Yang%2C%20F.%2C%20Li%2C%20B.%2C%20Warby%2C%20J.%2C%20Musiienko%2C%20A.%2C%20Menzel%2C%20D.%2C%20Lang%2C%20F.%2C%20Ke%26%23xDF%3Bler%2C%20S.%2C%20Levine%2C%20I.%2C%20Mantione%2C%20D.%2C%20Al-Ashouri%2C%20A.%2C%20H%26%23xE4%3Brtel%2C%20M.%20S.%2C%20Xu%2C%20K.%2C%20Cruz%2C%20A.%2C%20%26%23×2026%3B%20Albrecht%2C%20S.%20%282023%29.%20Interface%20engineering%20for%20high-performance%2C%20triple-halide%20perovskite%26%23×2013%3Bsilicon%20tandem%20solar%20cells.%20%3Ci%3EScience%3C%5C%2Fi%3E%2C%20%3Ci%3E381%3C%5C%2Fi%3E%286653%29%2C%2063%26%23×2013%3B69.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1126%5C%2Fscience.adf5872%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1126%5C%2Fscience.adf5872%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Interface%20engineering%20for%20high-performance%2C%20triple-halide%20perovskite%5Cu2013silicon%20tandem%20solar%20cells%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Silvia%22%2C%22lastName%22%3A%22Mariotti%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Eike%22%2C%22lastName%22%3A%22K%5Cu00f6hnen%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Florian%22%2C%22lastName%22%3A%22Scheler%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22K%5Cu00e1ri%22%2C%22lastName%22%3A%22Sveinbj%5Cu00f6rnsson%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Lea%22%2C%22lastName%22%3A%22Zimmermann%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Manuel%22%2C%22lastName%22%3A%22Piot%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Fengjiu%22%2C%22lastName%22%3A%22Yang%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Bor%22%2C%22lastName%22%3A%22Li%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jonathan%22%2C%22lastName%22%3A%22Warby%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Artem%22%2C%22lastName%22%3A%22Musiienko%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Dorothee%22%2C%22lastName%22%3A%22Menzel%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Felix%22%2C%22lastName%22%3A%22Lang%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Sebastian%22%2C%22lastName%22%3A%22Ke%5Cu00dfler%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Igal%22%2C%22lastName%22%3A%22Levine%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Daniele%22%2C%22lastName%22%3A%22Mantione%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Amran%22%2C%22lastName%22%3A%22Al-Ashouri%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Marlene%20S.%22%2C%22lastName%22%3A%22H%5Cu00e4rtel%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Ke%22%2C%22lastName%22%3A%22Xu%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Alexandros%22%2C%22lastName%22%3A%22Cruz%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jona%22%2C%22lastName%22%3A%22Kurpiers%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Philipp%22%2C%22lastName%22%3A%22Wagner%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Hans%22%2C%22lastName%22%3A%22K%5Cu00f6bler%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jinzhao%22%2C%22lastName%22%3A%22Li%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Artiom%22%2C%22lastName%22%3A%22Magomedov%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22David%22%2C%22lastName%22%3A%22Mecerreyes%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Eva%22%2C%22lastName%22%3A%22Unger%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Antonio%22%2C%22lastName%22%3A%22Abate%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Martin%22%2C%22lastName%22%3A%22Stolterfoht%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Bernd%22%2C%22lastName%22%3A%22Stannowski%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Rutger%22%2C%22lastName%22%3A%22Schlatmann%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Lars%22%2C%22lastName%22%3A%22Korte%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Steve%22%2C%22lastName%22%3A%22Albrecht%22%7D%5D%2C%22abstractNote%22%3A%22Improved%20stability%20and%20efficiency%20of%20two-terminal%20monolithic%20perovskite-silicon%20tandem%20solar%20cells%20will%20require%20reductions%20in%20recombination%20losses.%20By%20combining%20a%20triple-halide%20perovskite%20%281.68%20electron%20volt%20bandgap%29%20with%20a%20piperazinium%20iodide%20interfacial%20modification%2C%20we%20improved%20the%20band%20alignment%2C%20reduced%20nonradiative%20recombination%20losses%2C%20and%20enhanced%20charge%20extraction%20at%20the%20electron-selective%20contact.%20Solar%20cells%20showed%20open-circuit%20voltages%20of%20up%20to%201.28%20volts%20in%20p-i-n%20single%20junctions%20and%202.00%20volts%20in%20perovskite-silicon%20tandem%20solar%20cells.%20The%20tandem%20cells%20achieve%20certified%20power%20conversion%20efficiencies%20of%20up%20to%2032.5%25.%20%5Cn%20%20%20%20%20%20%20%20%20%20%2C%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20Editor%5Cu2019s%20summary%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20Two%20studies%20show%20how%20interfaces%20between%20perovskite%20layers%20and%20silicon%20cells%20in%20tandem%20solar%20cells%20can%20be%20modified%20to%20improve%20performance%20%28see%20the%20Perspective%20by%20De%20Wolf%20and%20Aydin%29.%20Mariotti%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20et%20al%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20.%20showed%20that%20an%20ionic%20liquid%2C%20piperazinium%20iodide%2C%20improved%20band%20alignment%20and%20enhanced%20charge%20extraction%20at%20the%20interface%20of%20a%20trihalide%20perovskite%20and%20a%20C60%20electron-transporting%20layer%20by%20creating%20a%20positive%20dipole.%20With%20these%20modifications%2C%20a%202.0-volt%20open%20circuit%20voltage%20was%20achieved%20in%20a%20silicon%20tandem%20cell.%20Chin%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20et%20al%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20.%20report%20the%20uniform%20deposition%20of%20the%20perovskite%20top%20cell%20on%20the%20micropyramids%20of%20crystalline%20silicon%20cells%20to%20achieve%20high%20photocurrents%20in%20tandem%20solar%20cells.%20Two%20different%20phosphonic%20acids%20improved%20the%20perovskite%20crystallization%20process%20and%20also%20minimized%20recombination%20losses.%20These%20modifications%20yielded%20perovskite%5C%2Fsilicon%20tandem%20cells%20with%20certified%20power%20conversion%20efficiencies%20of%20more%20than%2031%25%20for%20active%20areas%20of%20at%20least%201%20square%20centimeter.%20%5Cu2014PDS%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%2C%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20Surface%20treatment%20of%20triple-halide%20perovskite%20layers%20with%20piperazinium%20iodide%20enables%20highly%20efficient%20tandem%20solar%20cells.%22%2C%22date%22%3A%222023-07-07%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1126%5C%2Fscience.adf5872%22%2C%22ISSN%22%3A%220036-8075%2C%201095-9203%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fwww.science.org%5C%2Fdoi%5C%2F10.1126%5C%2Fscience.adf5872%22%2C%22collections%22%3A%5B%227WAEICCJ%22%5D%2C%22dateModified%22%3A%222024-01-24T13%3A00%3A45Z%22%7D%7D%2C%7B%22key%22%3A%22NDJQHBTL%22%2C%22library%22%3A%7B%22id%22%3A11840969%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Kabalan%20et%20al.%22%2C%22parsedDate%22%3A%222023-07-07%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EKabalan%2C%20L.%2C%20Kowalec%2C%20I.%2C%20Rigamonti%2C%20S.%2C%20Troppenz%2C%20M.%2C%20Draxl%2C%20C.%2C%20Catlow%2C%20C.%20R.%20A.%2C%20%26amp%3B%20Logsdail%2C%20A.%20J.%20%282023%29.%20Investigation%20of%20the%20Pd%3Csub%3E%281%26%23×2212%3Bx%29%3C%5C%2Fsub%3E%20Zn%3Csub%3Ex%3C%5C%2Fsub%3E%20alloy%20phase%20diagram%20using%20ab%20initio%20modelling%20approaches.%20%3Ci%3EJournal%20of%20Physics%3A%20Condensed%20Matter%3C%5C%2Fi%3E%2C%20%3Ci%3E35%3C%5C%2Fi%3E%2840%29%2C%20405402.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1088%5C%2F1361-648X%5C%2Face01a%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1088%5C%2F1361-648X%5C%2Face01a%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Investigation%20of%20the%20Pd%3Csub%3E%281%5Cu2212x%29%3C%5C%2Fsub%3E%20Zn%3Csub%3Ex%3C%5C%2Fsub%3E%20alloy%20phase%20diagram%20using%20ab%20initio%20modelling%20approaches%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Lara%22%2C%22lastName%22%3A%22Kabalan%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Igor%22%2C%22lastName%22%3A%22Kowalec%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Santiago%22%2C%22lastName%22%3A%22Rigamonti%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Maria%22%2C%22lastName%22%3A%22Troppenz%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Claudia%22%2C%22lastName%22%3A%22Draxl%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22C%20Richard%20A%22%2C%22lastName%22%3A%22Catlow%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Andrew%20J%22%2C%22lastName%22%3A%22Logsdail%22%7D%5D%2C%22abstractNote%22%3A%22Abstract%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20The%20identification%20of%20the%20stable%20phases%20in%20alloy%20materials%20is%20challenging%20because%20composition%20affects%20the%20structural%20stability%20of%20different%20intermediate%20phases.%20Computational%20simulation%2C%20via%20multiscale%20modelling%20approaches%2C%20can%20significantly%20accelerate%20the%20exploration%20of%20phase%20space%20and%20help%20to%20identify%20stable%20phases.%20Here%2C%20we%20apply%20such%20new%20approaches%20to%20understand%20the%20complex%20phase%20diagram%20of%20binary%20alloys%20of%20PdZn%2C%20with%20the%20relative%20stability%20of%20structural%20polymorphs%20considered%20through%20application%20of%20density%20functional%20theory%20coupled%20with%20cluster%20expansion%20%28CE%29.%20The%20experimental%20phase%20diagram%20has%20several%20competing%20crystal%20structures%2C%20and%20we%20focus%20on%20three%20different%20closed-packed%20phases%20that%20are%20commonly%20observed%20for%20PdZn%2C%20namely%20the%20face-centred%20cubic%20%28FCC%29%2C%20body-centred%20tetragonal%20%28BCT%29%20and%20hexagonal%20close%20packed%20%28HCP%29%2C%20to%20identify%20their%20respective%20stability%20ranges.%20Our%20multiscale%20approach%20confirms%20a%20narrow%20range%20of%20stability%20for%20the%20BCT%20mixed%20alloy%2C%20within%20the%20Zn%20concentration%20range%20from%2043.75%25%20to%2050%25%2C%20which%20aligns%20with%20experimental%20observations.%20We%20subsequently%20use%20CE%20to%20show%20that%20the%20phases%20are%20competitive%20across%20all%20concentrations%2C%20but%20with%20the%20FCC%20alloy%20phase%20favoured%20for%20Zn%20concentrations%20below%2043.75%25%2C%20and%20that%20the%20HCP%20structure%20favoured%20for%20Zn-rich%20concentrations.%20Our%20methodology%20and%20results%20provide%20a%20platform%20for%20future%20investigations%20of%20PdZn%20and%20other%20close-packed%20alloy%20systems%20with%20multiscale%20modelling%20techniques.%22%2C%22date%22%3A%222023-07-07%22%2C%22language%22%3A%22%22%2C%22DOI%22%3A%2210.1088%5C%2F1361-648X%5C%2Face01a%22%2C%22ISSN%22%3A%220953-8984%2C%201361-648X%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fiopscience.iop.org%5C%2Farticle%5C%2F10.1088%5C%2F1361-648X%5C%2Face01a%22%2C%22collections%22%3A%5B%227WAEICCJ%22%5D%2C%22dateModified%22%3A%222024-01-24T11%3A01%3A33Z%22%7D%7D%5D%7D
Lvov, A. G., Klimenko, L. S., Bykov, V. N., & Hecht, S. (2023). Revisiting Peri‐Aryloxyquinones: From a Forgotten Photochromic System to a Promising Tool for Emerging Applications. Chemistry – A European Journal, e202303654. https://doi.org/10.1002/chem.202303654
Zorn Morales, N., Severin, N., Rabe, J. P., Kirstein, S., List‐Kratochvil, E., & Blumstengel, S. (2023). Resonance Energy Transfer from Monolayer WS2 to Organic Dye Molecules: Conversion of Faint Visible‐Red into Bright Near‐Infrared Luminescence. Advanced Optical Materials, 11(24), 2301057. https://doi.org/10.1002/adom.202301057
Vona, C., Lubeck, S., Kleine, H., Gulans, A., & Draxl, C. (2023). Accurate and efficient treatment of spin-orbit coupling via second variation employing local orbitals. Physical Review B, 108(23), 235161. https://doi.org/10.1103/PhysRevB.108.235161
Yan, S., Chen, X., Li, W., Zhong, M., Xu, J., Xu, M., Wang, C., Pinna, N., & Lu, X. (2023). Highly Active and Stable Alkaline Hydrogen Evolution Electrocatalyst Based on Ir‐Incorporated Partially Oxidized Ru Aerogel under Industrial‐Level Current Density. Advanced Science, 2307061. https://doi.org/10.1002/advs.202307061
Beyranvand, F., Khosravi, A., Zabihi, F., Nemati, M., Gholami, M. F., Tavakol, M., Beyranvand, S., Satari, S., Rabe, J. P., Salimi, A., Cheng, C., & Adeli, M. (2023). Synthesis of Chiral Triazine Frameworks for Enantiodiscrimination. ACS Applied Materials & Interfaces, 15(48), 56213–56222. https://doi.org/10.1021/acsami.3c16659
Hübner, A., Rigamonti, S., & Draxl, C. (2023). Gauge invariance of the thermal conductivity in the quantum regime. Physical Review B, 108(24), 245201. https://doi.org/10.1103/PhysRevB.108.245201
Zu, F., Shin, D., Gutierrez‐Partida, E., Stolterfoht, M., Amsalem, P., & Koch, N. (2023). Charge Selective Contacts to Metal Halide Perovskites Studied with Photoelectron Spectroscopy: X‐Ray, Ultraviolet, and Visible Light Induced Energy Level Realignment. Advanced Materials Interfaces, 10(34), 2300413. https://doi.org/10.1002/admi.202300413
Stüwe, L., Geiger, M., Röllgen, F., Heinze, T., Reuter, M., Wessling, M., Hecht, S., & Linkhorst, J. (2023). Continuous Volumetric 3D Printing: Xolography in Flow. Advanced Materials, 2306716. https://doi.org/10.1002/adma.202306716
Kim, K., Kang, D., Blumstengel, S., Morales, N. Z., List-Kratochvil, E. J. W., Cho, S. W., Lee, H., Park, S., & Yi, Y. (2023). Enhancing photostability of 2D Ruddlesden–Popper perovskite via molecular acceptor passivation of metallic lead defects. Applied Physics Reviews, 10(4), 041411. https://doi.org/10.1063/5.0157930
Aru, J., Larkum, M. E., & Shine, J. M. (2023). The feasibility of artificial consciousness through the lens of neuroscience. Trends in Neurosciences, 46(12), 1008–1017. https://doi.org/10.1016/j.tins.2023.09.009
Skrodczky, K., Antunes, M. M., Zhu, Q., Valente, A. A., Pinna, N., & Russo, P. A. (2023). Single-Step Formation of Metal Oxide Nanostructures Wrapped in Mesoporous Silica and Silica–Niobia Catalysts for the Condensation of Furfural with Acetone. Nanomaterials, 13(23), 3046. https://doi.org/10.3390/nano13233046
Ledderose, J. M. T., Zolnik, T. A., Toumazou, M., Trimbuch, T., Rosenmund, C., Eickholt, B. J., Jaeger, D., Larkum, M. E., & Sachdev, R. N. S. (2023). Layer 1 of somatosensory cortex: an important site for input to a tiny cortical compartment. Cerebral Cortex, 33(23), 11354–11372. https://doi.org/10.1093/cercor/bhad371
Schultz, C., Fenske, M., Dion-Bertrand, L.-I., Gélinas, G., Marcet, S., Dagar, J., Bartelt, A., Schlatmann, R., Unger, E., & Stegemann, B. (2023). Hyperspectral Photoluminescence Imaging for Spatially Resolved Determination of Electrical Parameters of Laser‐Patterned Perovskite Solar Cells. Solar RRL, 7(22), 2300538. https://doi.org/10.1002/solr.202300538
Maslyanchuk, O., Paramasivam, G., Sarisozen, S., Heuer, A., Stolterfoht, M., Neher, D., Maticiuc, N., Unger, E., & Lang, F. (2023). Toward Understanding the Spectroscopic Performance and Charge Transport Mechanisms of Methylammonium Lead Tribromide Perovskite X- and γ -Rays Detectors. IEEE Transactions on Nuclear Science, 70(12), 2659–2667. https://doi.org/10.1109/TNS.2023.3334561
Bertocchi, I., Rocha-Almeida, F., Romero-Barragán, M. T., Cambiaghi, M., Carretero-Guillén, A., Botta, P., Dogbevia, G. K., Treviño, M., Mele, P., Oberto, A., Larkum, M. E., Gruart, A., Sprengel, R., Delgado-García, J. M., & Hasan, M. T. (2023). Pre- and postsynaptic N-methyl-D-aspartate receptors are required for sequential printing of fear memory engrams. IScience, 26(11), 108050. https://doi.org/10.1016/j.isci.2023.108050
Triolo, C., Maisuradze, M., Li, M., Liu, Y., Ponti, A., Pagot, G., Di Noto, V., Aquilanti, G., Pinna, N., Giorgetti, M., & Santangelo, S. (2023). Charge Storage Mechanism in Electrospun Spinel‐Structured High‐Entropy (Mn0.2Fe0.2Co0.2Ni0.2Zn0.2)3O4 Oxide Nanofibers as Anode Material for Li‐Ion Batteries. Small, 19(46), 2304585. https://doi.org/10.1002/smll.202304585
Vílchez-Cózar, Á., Colodrero, R. M. P., Bazaga-García, M., Marrero-López, D., El-refaei, S. M., Russo, P. A., Pinna, N., Olivera-Pastor, P., & Cabeza, A. (2023). Tuning the activity of cobalt 2-hydroxyphosphonoacetates-derived electrocatalysts for water splitting and oxygen reduction: Insights into the local order by pair distribution function analysis. Applied Catalysis B: Environmental, 337, 122963. https://doi.org/10.1016/j.apcatb.2023.122963
Munn, B. R., Müller, E. J., Aru, J., Whyte, C. J., Gidon, A., Larkum, M. E., & Shine, J. M. (2023). A thalamocortical substrate for integrated information via critical synchronous bursting. Proceedings of the National Academy of Sciences, 120(46), e2308670120. https://doi.org/10.1073/pnas.2308670120
Chen, Y., Wang, H., Chen, H., Zhang, W., Xu, S., Pätzel, M., Ma, C., Wang, C., McCulloch, I., Hecht, S., & Samorì, P. (2023). Quasi‐1D Polymer Semiconductor–Diarylethene Blends: High Performance Optically Switchable Transistors. Advanced Functional Materials, 33(46), 2305494. https://doi.org/10.1002/adfm.202305494
Funk, H., Binyamin, T., Etgar, L., Shargaieva, O., Unold, T., Eljarrat, A., Koch, C. T., & Abou-Ras, D. (2023). Phase Segregation Mechanisms in Mixed-Halide CsPb(BrxI1–x )3 Nanocrystals in Dependence of Their Sizes and Their Initial [Br]:[I] Ratios. ACS Materials Au, 3(6), 687–698. https://doi.org/10.1021/acsmaterialsau.3c00056
Xu, W., Xu, Y., Grzimek, V., Martin, A., Schultz, T., Russo, P. A., Lu, Y., Koch, N., & Pinna, N. (2023). Insights into the kinetics–morphology relationship of 1-, 2-, and 3D TiNb2O7 anodes for Li-ion storage. Nano Research. https://doi.org/10.1007/s12274-023-6201-1
Zorn Morales, N., Rühl, D. S., Sadofev, S., Ligorio, G., List-Kratochvil, E., Kewes, G., & Blumstengel, S. (2023). Strong coupling of monolayer WS2 excitons and surface plasmon polaritons in a planar Ag/WS2 hybrid structure. Physical Review B, 108(16), 165426. https://doi.org/10.1103/PhysRevB.108.165426
Triolo, C., Moulaee, K., Ponti, A., Pagot, G., Di Noto, V., Pinna, N., Neri, G., & Santangelo, S. (2023). Spinel‐Structured High‐Entropy Oxide Nanofibers as Electrocatalysts for Oxygen Evolution in Alkaline Solution: Effect of Metal Combination and Calcination Temperature. Advanced Functional Materials, 2306375. https://doi.org/10.1002/adfm.202306375
Gatsios, C., Opitz, A., Lungwitz, D., Mansour, A. E., Schultz, T., Shin, D., Hammer, S., Pflaum, J., Zhang, Y., Barlow, S., Marder, S. R., & Koch, N. (2023). Surface doping of rubrene single crystals by molecular electron donors and acceptors. Physical Chemistry Chemical Physics, 25(43), 29718–29726. https://doi.org/10.1039/D3CP03640E
Iqbal, Z., Zu, F., Musiienko, A., Gutierrez-Partida, E., Köbler, H., Gries, T. W., Sannino, G. V., Canil, L., Koch, N., Stolterfoht, M., Neher, D., Pavone, M., Muñoz-García, A. B., Abate, A., & Wang, Q. (2023). Interface Modification for Energy Level Alignment and Charge Extraction in CsPbI 3 Perovskite Solar Cells. ACS Energy Letters, 8(10), 4304–4314. https://doi.org/10.1021/acsenergylett.3c01522
Mansour, A. E., Warren, R., Lungwitz, D., Forster, M., Scherf, U., Opitz, A., Malischewski, M., & Koch, N. (2023). Coordination of Tetracyanoquinodimethane-Derivatives with Tris(pentafluorophenyl)borane Provides Stronger p-Dopants with Enhanced Stability. ACS Applied Materials & Interfaces, 15(39), 46148–46156. https://doi.org/10.1021/acsami.3c10373
Yu, J., Shen, Z., Lu, W., Zhu, Y., Liu, Y.-X., Neher, D., Koch, N., & Lu, G. (2023). Composition Waves in Solution‐Processed Organic Films and Its Propagations from Kinetically Frozen Surface Mesophases. Advanced Functional Materials, 33(40), 2302089. https://doi.org/10.1002/adfm.202302089
Liu, Y., Li, Z., Liu, X.-H., Pinna, N., & Wang, Y. (2023). Atomically precise AuxAg25−x nanoclusters with a modulated interstitial Au–Ag microenvironment for enhanced visible-light-driven photocatalytic hydrogen evolution. Nanoscale Horizons, 8(10), 1435–1439. https://doi.org/10.1039/D3NH00235G
Grützmacher, S., Heyl, M., Nardi, M. V., Koch, N., List‐Kratochvil, E. J. W., & Ligorio, G. (2023). Local Manipulation of the Energy Levels of 2D TMDCs on the Microscale Level via Microprinted Self‐Assembled Monolayers. Advanced Materials Interfaces, 10(27), 2300276. https://doi.org/10.1002/admi.202300276
Gonzalez Oliva, I., Maurer, B., Alex, B., Tillack, S., Schebek, M., & Draxl, C. (2023). Hybrid Materials: Still Challenging for Ab Initio Theory? Physica Status Solidi (a), 221(1), 2300170. https://doi.org/10.1002/pssa.202300170
Müller, S., Sparka, J. A., Kuban, M., Draxl, C., & Grunske, L. (2023). Grammar‐based fuzzing of data integration parsers in computational materials science. Software: Practice and Experience, 54(2), 208–224. https://doi.org/10.1002/spe.3266
Li, G., Hu, Y., Li, M., Tang, Y., Zhang, Z., Musiienko, A., Cao, Q., Akhundova, F., Li, J., Prashanthan, K., Yang, F., Janasik, P., Appiah, A. N. S., Trofimov, S., Livakas, N., Zuo, S., Wu, L., Wang, L., Yang, Y., … Abate, A. (2023). Managing Excess Lead Iodide with Functionalized Oxo‐Graphene Nanosheets for Stable Perovskite Solar Cells. Angewandte Chemie International Edition, 62(39), e202307395. https://doi.org/10.1002/anie.202307395
Ghiringhelli, L. M., Baldauf, C., Bereau, T., Brockhauser, S., Carbogno, C., Chamanara, J., Cozzini, S., Curtarolo, S., Draxl, C., Dwaraknath, S., Fekete, Á., Kermode, J., Koch, C. T., Kühbach, M., Ladines, A. N., Lambrix, P., Himmer, M.-O., Levchenko, S. V., Oliveira, M., … Scheffler, M. (2023). Shared metadata for data-centric materials science. Scientific Data, 10(1), 626. https://doi.org/10.1038/s41597-023-02501-8
Juergensen, S., Kessens, M., Berrezueta-Palacios, C., Severin, N., Ifland, S., Rabe, J. P., Mueller, N. S., & Reich, S. (2023). Collective States in Molecular Monolayers on 2D Materials. ACS Nano, 17(17), 17350–17358. https://doi.org/10.1021/acsnano.3c05384
Zhang, W., & Pinna, N. (2023). Integration of Noble Metal Nanocrystals in a Hollow Metal–Organic Framework Shell. Chemistry of Materials, 35(17), 6799–6807. https://doi.org/10.1021/acs.chemmater.3c01112
Saliba, M., Unger, E., Etgar, L., Luo, J., & Jacobsson, T. J. (2023). A systematic discrepancy between the short circuit current and the integrated quantum efficiency in perovskite solar cells. Nature Communications, 14(1), 5445. https://doi.org/10.1038/s41467-023-41263-0
Li, J., Dagar, J., Shargaieva, O., Maus, O., Remec, M., Emery, Q., Khenkin, M., Ulbrich, C., Akhundova, F., Márquez, J. A., Unold, T., Fenske, M., Schultz, C., Stegemann, B., Al‐Ashouri, A., Albrecht, S., Esteves, A. T., Korte, L., Köbler, H., … Unger, E. (2023). Ink Design Enabling Slot‐Die Coated Perovskite Solar Cells with >22% Power Conversion Efficiency, Micro‐Modules, and 1 Year of Outdoor Performance Evaluation. Advanced Energy Materials, 13(33), 2203898. https://doi.org/10.1002/aenm.202203898
Gavini, V., Baroni, S., Blum, V., Bowler, D. R., Buccheri, A., Chelikowsky, J. R., Das, S., Dawson, W., Delugas, P., Dogan, M., Draxl, C., Galli, G., Genovese, L., Giannozzi, P., Giantomassi, M., Gonze, X., Govoni, M., Gygi, F., Gulans, A., … Perez, D. (2023). Roadmap on electronic structure codes in the exascale era. Modelling and Simulation in Materials Science and Engineering, 31(6), 063301. https://doi.org/10.1088/1361-651X/acdf06
Kim, Y., Gensler, M., Kim, J., Janietz, S., Völkel, C., Boeffel, C., Solak, S., Hermerschmidt, F., List-Kratochvil, E. J. W., Han, C. J., Oh, M. S., Park, K., & Wedel, A. (2023). 69‐4: Late‐News Paper: Quantum Dot/Organic Nanohybrids for InP‐based QD‐LEDs and Their Patterning via Electrohydrodynamic Jet Printing. SID Symposium Digest of Technical Papers, 54(1), 982–985. https://doi.org/10.1002/sdtp.16732
Niu, W., Fu, Y., Serra, G., Liu, K., Droste, J., Lee, Y., Ling, Z., Xu, F., Cojal González, J. D., Lucotti, A., Rabe, J. P., Ryan Hansen, M., Pisula, W., Blom, P. W. M., Palma, C., Tommasini, M., Mai, Y., Ma, J., & Feng, X. (2023). Bottom‐up Solution Synthesis of Graphene Nanoribbons with Precisely Engineered Nanopores. Angewandte Chemie International Edition, 62(35), e202305737. https://doi.org/10.1002/anie.202305737
Fabozzi, F. G., Severin, N., Rabe, J. P., & Hecht, S. (2023). Room Temperature On-Surface Synthesis of a Vinylene-Linked Single Layer Covalent Organic Framework. Journal of the American Chemical Society, 145(33), 18205–18209. https://doi.org/10.1021/jacs.3c04730
Wang, J., Russo, P. A., & Pinna, N. (2023). Impact of Surface Hydroxyl Groups on CuO Film Growth by Atomic Layer Deposition. Langmuir, 39(33), 11603–11609. https://doi.org/10.1021/acs.langmuir.3c01109
Taffelli, A., Heyl, M., Favaro, M., Dirè, S., Pancheri, L., List-Kratochvil, E. J. W., Quaranta, A., & Ligorio, G. (2023). Demonstrating the high sensitivity of MoS2 monolayers in direct x-ray detectors. APL Materials, 11(8), 081101. https://doi.org/10.1063/5.0151794
Huang, C. (Dennis), & Hecht, S. (2023). A Blueprint for Transforming Indigos to Photoresponsive Molecular Tools. Chemistry – A European Journal, 29(43), e202300981. https://doi.org/10.1002/chem.202300981
Shen, X., Gallant, B. M., Holzhey, P., Smith, J. A., Elmestekawy, K. A., Yuan, Z., Rathnayake, P. V. G. M., Bernardi, S., Dasgupta, A., Kasparavicius, E., Malinauskas, T., Caprioglio, P., Shargaieva, O., Lin, Y., McCarthy, M. M., Unger, E., Getautis, V., Widmer‐Cooper, A., Herz, L. M., & Snaith, H. J. (2023). Chloride‐Based Additive Engineering for Efficient and Stable Wide‐Bandgap Perovskite Solar Cells. Advanced Materials, 35(30), 2211742. https://doi.org/10.1002/adma.202211742
Haas, B., Boland, T. M., Elsässer, C., Singh, A. K., March, K., Barthel, J., Koch, C. T., & Rez, P. (2023). Atomic Resolution Mapping of Localized Phonon Modes in Silicon Grain Boundaries. Microscopy and Microanalysis, 29(Supplement_1), 618–619. https://doi.org/10.1093/micmic/ozad067.300
Haas, B., Radtke, G., Quillin, S. C., Lovejoy, T. C., Dellby, N., Krivanek, O. L., Hammud, A., Schröder, T., & Koch, C. T. (2023). Mapping Phonon Dispersion Surfaces at Nanometer Scale. Microscopy and Microanalysis, 29(Supplement_1), 356–357. https://doi.org/10.1093/micmic/ozad067.166
Haas, B., Boland, T. M., Elsässer, C., Singh, A. K., March, K., Barthel, J., Koch, C. T., & Rez, P. (2023). Atomic-Resolution Mapping of Localized Phonon Modes at Grain Boundaries. Nano Letters, 23(13), 5975–5980. https://doi.org/10.1021/acs.nanolett.3c01089
Mariotti, S., Köhnen, E., Scheler, F., Sveinbjörnsson, K., Zimmermann, L., Piot, M., Yang, F., Li, B., Warby, J., Musiienko, A., Menzel, D., Lang, F., Keßler, S., Levine, I., Mantione, D., Al-Ashouri, A., Härtel, M. S., Xu, K., Cruz, A., … Albrecht, S. (2023). Interface engineering for high-performance, triple-halide perovskite–silicon tandem solar cells. Science, 381(6653), 63–69. https://doi.org/10.1126/science.adf5872
Kabalan, L., Kowalec, I., Rigamonti, S., Troppenz, M., Draxl, C., Catlow, C. R. A., & Logsdail, A. J. (2023). Investigation of the Pd(1−x) Znx alloy phase diagram using ab initio modelling approaches. Journal of Physics: Condensed Matter, 35(40), 405402. https://doi.org/10.1088/1361-648X/ace01a
2022
11840969
P9IK2MPI
2022
1
apa
50
date
desc
374
https://csmb.hu-berlin.de/wp-content/plugins/zotpress/
%7B%22status%22%3A%22success%22%2C%22updateneeded%22%3Afalse%2C%22instance%22%3Afalse%2C%22meta%22%3A%7B%22request_last%22%3A0%2C%22request_next%22%3A0%2C%22used_cache%22%3Atrue%7D%2C%22data%22%3A%5B%7B%22key%22%3A%2275VF2R4D%22%2C%22library%22%3A%7B%22id%22%3A11840969%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Hoock%20et%20al.%22%2C%22parsedDate%22%3A%222022-12-01%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EHoock%2C%20B.%2C%20Rigamonti%2C%20S.%2C%20%26amp%3B%20Draxl%2C%20C.%20%282022%29.%20Advancing%20descriptor%20search%20in%20materials%20science%3A%20feature%20engineering%20and%20selection%20strategies.%20%3Ci%3ENew%20Journal%20of%20Physics%3C%5C%2Fi%3E%2C%20%3Ci%3E24%3C%5C%2Fi%3E%2811%29%2C%20113049.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1088%5C%2F1367-2630%5C%2Faca49c%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1088%5C%2F1367-2630%5C%2Faca49c%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Advancing%20descriptor%20search%20in%20materials%20science%3A%20feature%20engineering%20and%20selection%20strategies%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Benedikt%22%2C%22lastName%22%3A%22Hoock%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Santiago%22%2C%22lastName%22%3A%22Rigamonti%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Claudia%22%2C%22lastName%22%3A%22Draxl%22%7D%5D%2C%22abstractNote%22%3A%22Abstract%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20A%20main%20goal%20of%20data-driven%20materials%20research%20is%20to%20find%20optimal%20low-dimensional%20descriptors%2C%20allowing%20us%20to%20predict%20a%20physical%20property%2C%20and%20to%20interpret%20them%20in%20a%20human-understandable%20way.%20In%20this%20work%2C%20we%20advance%20methods%20to%20identify%20descriptors%20out%20of%20a%20large%20pool%20of%20candidate%20features%20by%20means%20of%20compressed%20sensing.%20To%20this%20extent%2C%20we%20develop%20schemes%20for%20engineering%20appropriate%20candidate%20features%20that%20are%20based%20on%20simple%20basic%20properties%20of%20building%20blocks%20that%20constitute%20the%20materials%20and%20that%20are%20able%20to%20represent%20a%20multi-component%20system%20by%20scalar%20numbers.%20Cross-validation%20based%20feature-selection%20methods%20are%20developed%20for%20identifying%20the%20most%20relevant%20features%2C%20thereby%20focusing%20on%20high%20generalizability.%20We%20apply%20our%20approaches%20to%20an%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20ab%20initio%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20dataset%20of%20ternary%20group-IV%20compounds%20to%20obtain%20a%20set%20of%20descriptors%20for%20predicting%20lattice%20constants%20and%20energies%20of%20mixing.%20In%20particular%2C%20we%20introduce%20simple%20complexity%20measures%20in%20terms%20of%20involved%20algebraic%20operations%20as%20well%20as%20the%20amount%20of%20utilized%20basic%20properties.%22%2C%22date%22%3A%222022-12-01%22%2C%22language%22%3A%22%22%2C%22DOI%22%3A%2210.1088%5C%2F1367-2630%5C%2Faca49c%22%2C%22ISSN%22%3A%221367-2630%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fiopscience.iop.org%5C%2Farticle%5C%2F10.1088%5C%2F1367-2630%5C%2Faca49c%22%2C%22collections%22%3A%5B%22P9IK2MPI%22%5D%2C%22dateModified%22%3A%222024-02-29T10%3A28%3A55Z%22%7D%7D%2C%7B%22key%22%3A%224QWZSX63%22%2C%22library%22%3A%7B%22id%22%3A11840969%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Taffelli%20et%20al.%22%2C%22parsedDate%22%3A%222022-11-29%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3ETaffelli%2C%20A.%2C%20Ligorio%2C%20G.%2C%20Pancheri%2C%20L.%2C%20Quaranta%2C%20A.%2C%20Ceccato%2C%20R.%2C%20Chiappini%2C%20A.%2C%20Nardi%2C%20M.%20V.%2C%20List-Kratochvil%2C%20E.%20J.%20W.%2C%20%26amp%3B%20Dir%26%23xE8%3B%2C%20S.%20%282022%29.%20Large%20area%20MoS%3Csub%3E2%3C%5C%2Fsub%3E%20films%20fabricated%20via%20sol-gel%20used%20for%20photodetectors.%20%3Ci%3EOptical%20Materials%3C%5C%2Fi%3E%2C%20%3Ci%3E135%3C%5C%2Fi%3E%2C%20113257.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1016%5C%2Fj.optmat.2022.113257%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1016%5C%2Fj.optmat.2022.113257%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Large%20area%20MoS%3Csub%3E2%3C%5C%2Fsub%3E%20films%20fabricated%20via%20sol-gel%20used%20for%20photodetectors%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Alberto%22%2C%22lastName%22%3A%22Taffelli%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Giovanni%22%2C%22lastName%22%3A%22Ligorio%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Lucio%22%2C%22lastName%22%3A%22Pancheri%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Alberto%22%2C%22lastName%22%3A%22Quaranta%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Riccardo%22%2C%22lastName%22%3A%22Ceccato%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Andrea%22%2C%22lastName%22%3A%22Chiappini%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Marco%20Vittorio%22%2C%22lastName%22%3A%22Nardi%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Emil%20J.W.%22%2C%22lastName%22%3A%22List-Kratochvil%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Sandra%22%2C%22lastName%22%3A%22Dir%5Cu00e8%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%222022-11-29%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1016%5C%2Fj.optmat.2022.113257%22%2C%22ISSN%22%3A%2209253467%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Flinkinghub.elsevier.com%5C%2Fretrieve%5C%2Fpii%5C%2FS0925346722012964%22%2C%22collections%22%3A%5B%22P9IK2MPI%22%5D%2C%22dateModified%22%3A%222023-06-05T11%3A59%3A11Z%22%7D%7D%5D%7D
Hoock, B., Rigamonti, S., & Draxl, C. (2022). Advancing descriptor search in materials science: feature engineering and selection strategies. New Journal of Physics, 24(11), 113049. https://doi.org/10.1088/1367-2630/aca49c
Taffelli, A., Ligorio, G., Pancheri, L., Quaranta, A., Ceccato, R., Chiappini, A., Nardi, M. V., List-Kratochvil, E. J. W., & Dirè, S. (2022). Large area MoS2 films fabricated via sol-gel used for photodetectors. Optical Materials, 135, 113257. https://doi.org/10.1016/j.optmat.2022.113257